
Best
Available

Copy

.,

PPI^^IHPPPIBipipi5W!!Bl»!«W»l'^—"'Wll«'T'^^

r

v.

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A016 785

A PROCESS ELABORATinN FORMALISM FOR WRITING

AND ANALYZING PROGRAMS

UNIVERSITY OF SOUTHERN CALIFORNIA

PREPARED FOR

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

OCTOBER 1975

r äüMi i i - -■—^ — — -■.■->■--.--. -~..:. ..y-

^wmw^rnvw* HPUll.. mill. n.jiMiwu. ijuppMiWiumppMll^i^WllW^ IIUJH%. iii|iiii^4i.,iiiyni(i»

r KEEP UP TO DATE
Between the time you ordered this report—

which is only one of the hundreds of thou-
sands in the NTIS information collection avail-
able to you—and the time you are reading
this message, several new reports relevant to
your interests probably have entered the col-
lection.

Subscribe to the Weekly Govemment
Abstracts series that will bring you sum-
maries of new reports as soon as they are
received by NTIS from the originators of the
research. The WGA's are an NTIS weekly
newsletter service covering the most recent
research findings in 25 areas of industrial,
technological, and sociological interest—
invaluable information for executives and
professionals who must keep up to date.

The executive and professional informa-
tion service provided by NTIS in the Weekly
Government Abstracts newsletters will give
you thorough and comprehensive coverage
of government-conducted or sponsored re-

search activities. And you'll get this impor-
tant information within two weeks of the time
it's released by originating agencies.

WGA newsletters are computer produced
and electronically photocomposed to slash
the time gap between the release of a report
and its availability. You can learn about
technical innovations immediately—and use
them in the most meaningful and productive
ways possible for your organization. Please
request NTIS-PR-205/PCW for more infor-
mation.

The weekly newsletter series will keep you
current. But learn what you have missed In
the past by ordering a computer NTISearch
of all the research reports in your area of
interest, dating as far back as 1964, if you
wish. Please request NTIS-PR-186/PCN for
more information.

WRITE: Managing Editor
5285 Port Royal Road
Springfield, VA 22161

Keep Up To Date With SRIM
SRIM (Selected Research in Microfiche)
provides you with regular, automatic distri-
bution of the complete texts of NTIS research
reports only in the subject areas you select.
SRIM covers almost all Govemment re-
search reports by subject area and/or the
originating Federal or local government
agency. You may subscribe by any category
or subcategory of our WGA (Weekly Govern-
ment AbsUrcts) or Government Reports
Announcements and Index categories, or to
the reports issued by a particular agency
such as the Department of Defense, Federal
Energy Administration, or Environmental
Protection Agency. Other options that will
give you greater selectivity are available on
request.

The cost of SRIM service is only 45(«
domestic (6(te foreign) for each complete

microfiched report. Your SRIM service begins
as soon as your order is received and proc-
essed and you wil! receive biweekly ship-
ments thereafter. If you wish, your service
will be backdated to furnish you microfiche
of reports issued earlier.

Because of contractual arrangements with
several Special Technology Groups, not all
NTIS reports are distributed in the SRIM
program. You will receive a notice in your
microfiche shipments identifying the excep-
tionally priced reports not available through
SRIM.

A deposit account with NTIS is required
before this service can be initiated. If you
have specific questions con arning this serv-
ice, please call (703) 451-1558, or write NTIS,
attention SRIM Product Manager.

This information product distributed by

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

k;-" - ■ • - iii-iriüiira-fii mm mfii -'"'-•'^-"■•■""--■ ■fi.rf "•' ■'■■-■ "-"-^'^"•'—"^ . .^.^.^ :.~.^:^..^.^^ ...^t. ..-■:■: -^.-^.^ ■:.^.,..J.^^

n^mmimmmmim** .-mihmu.mmmmmmmmmmmm.iiimmmnfAmmm^ > '••• ••••' MBMmwpB^BWHWIiyi-.IW.L-. ..IJJI " H" «'■lIBlUimM.IBWÜWBWIBir-

UNCLASSIFIED
SECuRITv CLASSiriC AHON OF THIS PAGE (»titn Data Enfrtd)

REPORT DOCUMENTATION PAGE
r REPORT NUMBER

ISI/RR-75-35

2. GOVT ACCESSION NO.

« TITLE 'anrf Sublillr)

A Process Elaboration Formalism for Writing and
Analyzing Programs

7 *uTMORrt;

David Wilczynski

9 PERFORMING ORGANIZATION NAME AND ADDRESS

USC/lnformation Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90291

H CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Piojects Agency
1400 Wilson Blvd.
Arlington. VA 22209

14 MONITORING AGENCY NAME » ADORESSf// dllltrtnl tram ConfrolllnJ Of/(c»)

16 OISTRlBuTlON STATEMENT rol ihlt Rmporlj

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT * PERIOD COHERED

Research " /

C PERFORMING O-RG. REPORT NUMBER

• CONTRACT ON GRANT N'JMBER'.J

DAHC 15 72 C 0308

10. PROGRAM ELEMENT, PROJECT. TASK
AREA « WORK UNIT NUMBERS

ARPA Order '''2223
Program Code 3D30 & 3P10

12 REPORT DATE

October 1975
U NUMBER OF PAGES

flit Ihlfimpt IS SECURITY CLASS, flit Ihlfnport)

Unclassified

IS«. OECLASSIFICATION DOWNGRADING
SCHEDULE

This document approved for public release and sale; distribution unlimited.

17 DISTRIBUTION STATEMENT fal fh* mbttfet «nlarad In Block 10, II dtlHtwnl from Report;

IS, SUPPLEMENTARY NOTES

PRICES SUBJECT TO CHANGE

19 KEY WORDS CCondnua on ravarta mid» II nacaaaary «id lämnllly by block nuoibar;

automatic debugging, automatic programming, execution graphs, production systems,
program intentions

20 ABSTRACT rConllnua on ravaiaa »Ma U nacaaaary and Idtntlly by block nunbarj

(OVER)

DD t JAN 73 1473 EDITION OF I NOV 85 IS OBSOLETE •
S/N 0102-0M-660J

1« secu
UNCLASSIFIED

RlTY CLASSIFICATION OF THIS PACE flWian Dala Vnlarad;

•'^ '■• - , . _^ -■*—■■■ , ; ■

""! ■ m m mi imin ■ ■».aniiwun,!. iii.iiiB.ni^nvnBni iiukiu m.wmm

UNCLASSIFIED
StCuWITY CLAISIFICATIQW OF THIS FAOenXlM Dmim tnl,n4)

20. ABSTRACT

This research effort presents a formalism for writing programs which explicitly addresses
and highlights some program construction issues. The formalism, a kind of production system,
generates a graph that defines the process under inspection, making explicit both when and
where variable bindings take place. From the standpoint of proper data structuring these extra
dimensions are useful for analyzing a program, particularly with respect to ease of data access,
access ambiguity, proper sequence of bindings, and other related issues. Because the
formalism is a natural one for parsing a protocol of an instance of the process described by the
productions, the system will be able to run in two modes: generation (to produce a behavior
instance) or parse (determining whether a particular behavior instance could have been
generated from a given program). Both these capabilities are important in debugging programs,
espec.ally those written in an Automatic Programming environment in which the system may be
communicating with a nonprogrammer.

.

liL

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS *AGt(Wh*n Data Enl.r.d)

 ••■— -- ■ - - ...

WVW m» a lim MI pa up i i I ui mvm^i^^^^t^m^mm «■"-I-1 ..i w^mm^^^^immmmiii- < wv- nw-' " niPHIMi

ARPA ORDER SO. 2223

I SI RR.-Hl
October ITS

Dovid Wilczynski

A Process Elaboration Formalism for Writing

and Analyzing Programs

INFORMATION SCIF.NCIS INSTITUTE

UNIVERSITY OF SOUTHERN CALIFORNIA IMf 4676 Admnally WayfMamadel Rey/CnUjorma 90291
(2!3)822-l5n

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHCtS 72 C 0308 ARP* ORDER
NO 22Z3 I, PROGRAM CODE NO 3D30AND3P10

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OFFICIA. OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON CR AGENCY CONNECTED WITH IT

THI:., DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

• •
II

 -

■^■Hip™p».ipjlk.l*.l«l»Jl I.- ll|.WtkMIJ.I.

r

CONTENTS

Abstract v

Problem Statement /
1.1 Introduction /

1.2 Program Behavior and Expectations 3

1.3 Representational Requirements 4
1.4 Debugging Execution Flaws 6

1.5 Philosophy of Program Understanding 10

An Introductory Example //

2.1 Intent of the Example 11
2.7. "he English Statement //
2.3 A PLX Program 13

2.4 The Process Graphs lf>
2.5 Stating Expectations in PLX 22
2.6 Summary 24

The Production Language - PLX 25

3.1 Production Systems in General 25

3.2 The Programming Environment for PLX
3.3 Preliminary Terminology 29

3.4 PLX Primitives .1i

3.5 Formal Description of PLX .1.1
3.6 Summary W

28

Access Path Theory 50

4.1 Introduction 50

4.2 Natural Language Access Methods 50
4.3 Accessing Typed Variables in XREP 52
4.4 Relative Addressing Hi

4.5 The Access Path Problem 59

4.6 Computing Access Paths 61

4.7 The PEG and Other Execution Models 66

Intentions and Debugging 68

5.1 Inroduction 68
Systems for Writing Programs 68
Program Proving Systems 69

Automatic Debugging Programs 70

XREP's Intention String Mechanism 73

5.2
5.3
5.4

5.5
5.6 General Error Discussion

iii

11 - HI ni—i

UJMMIUjM^BWPy^-WlH^^ **F *-" liWi.WiP niu.

1

5.7 Unbound Variables 75
5.8 Wrong Bindings 81

5.9 Recursion and Structure Faults 85
5.10 Preconditions and Postconditions in Recursion

5.11 Resolving Pronomial Reference*". 97

94

Conclusions and Future Directions Wtt

6.1 The Production Language 100

6.2 The PEG, Intentions, and Debugging

References 106

m

i

IV

_ __ ■ '■■ ■ ' -' ■■ ' ■-'-'~ ..—-. *M

ABSTRACT

The pnmary goal of an Automatic Programming srystem is to generate programs from some
high-level description of a user's problem. This task may involve a diversity of efforts, rang.ng from
modelling 'he user to optimizing the final program product. In particular, the choice of a suitable
internal program model will influence the direction and capabilities of an Automatic Progiamming
system; the form of the language will have an impact not only on the ease of the translation ti.sk, but
on the scope of the program analysis for deteTnining the accuracy of the generated prog'am as
well.

This research effort presents a system called XREP, which includes a formalism for witing
programs that explicitly addresses and highlights some program construction and verification is; ues.
The formalism, a production system, includes facilities for generating an object and referencing i by
specifying its class type and identifying the desired instance by providing some limiting predicate,
the predominant method used in human communication for referencing objects. XREP's language
interpreter generates a graph that defines the process under inspection, making explicit both whon
and where variable bindings for jenerated objects take place. From the standpoint of proper da a
structuring these extra dimensions found in the execution graph are useful for analyzing a prograr >,
particularly with respect to ease of data access, detecting access ambiguity, proper sequence cf
bindings, and other related issues.

Another facet of program writing includes the ability to test thf. final product in order to
verify that the program's behavior matches the user's expectation. XREP accepts an intention string
of observable events, externally supplied by the user, for this purpose. Because the production
language formalism is natural for a parsin« task, the intention string, as a protocol of an instance of
the process described by the productions, can be parsed for acceptability. The system will thus be
able to run in two modes: generation (to produce a behavior instance) or parse (determining whether
a particular behavior instance could have been generatad from a given program).

In order to show the adequacy of the vanous representations, particularly the production
language, the execution graph, the form of the data variables and objects, and the intention string
mechanism, specific automatic dehuggmg fecnniques were developed that apply to problems normally
found in human communications, such as improperly stated loop control, ambiguous references, and
data structuring faults. The nature of this debugging effort emphasizes some of the problems which
an Automatic Programming translator will face in trying to convert human inputs into a computer
program.

Though this research investigates only one analytical phase of Automatic Programming, !he
form of the representations chosen for it has an impact upon the entire effort; the capabilities
displayed in this report are meant as a showcase for those formalisms. Thus, XREP's variables,
as a counterpart to natural language objects, are shown to have an integrated place within the

- — ——„^^^^i..^^-^-^^—.^J_^„. i—

'I ■' wwm*m-,i*mmri™im*m' mnrfmrnM^^nmnviimmiw .m-. »■WSpWMIiWLiP'U' ^

production language, while their placement within the execution graph promotes powerful and
intuitive accessing mechanisms. The nature of the production language not only makes the execution
y,raph simple to generate, but also associates them visually, making it easy to relate analyses in the
graph to the language. The intention string provides a reasonable, if not formal, way to specify
program expectations, with the production language a perfect vehicle for carrying out the associated
parsing. And, finally, high-level debugging techniques are shown to be possible in a suitably rich
environment.

This is part of a series of reports describing ISI research directed toward reducing significantly
the cost of military software while improving its application and upgrading the general quality of

software. This report covers a significant portion of the author's DSC doctoral dissertation,

completed at ISI.

VI

■■^■*l^i""■■»l .i i '~~r*^mmmm^mmmi**mmmmrmmmi*^^m^rtmi > i i m nin i IHIMJ i ui i , IIPJ .,,..,,-..•- - —i -

I. PROBLEM ST/ITKMENT

1.1 INTRODUCTION

The concept of a programming environment has added new dimensions to software research.
With the advent of interactive use of computers a programmer can participate actively in software
design and development. It is no longer realistic to view programming as a process of discrete steps
starting at composition, then alternating between submittals and debugging the results. Instead it
becomes a dynamic process with unclear demarcations. Recent programming systems specificaUy
designed to operate interactively, the beot example of which is INTERLISP [TEITELMAN 74], exemplify
this concept by also taking an active role in the programming process. INTERLISP not only provides
tools to the programmer, but it also "watcheb" over the process, giving aid when it can by detecting
local errors and providing numerous "smart" commands to hide unnecessary programming details.
Only a limited attempt is made, however, to "understand" the program, a task which falls into a
different area of research called Automatic Programming.

The final goal of Automatic Programming is to be able to generate computer programs from
natural descriptions of the tasks to be performed. By attempting to take over the entire generation
process, Automatic Programming represents the ultimate extension of the capabilities of the
programming environment. Becauie of economics and the state of our knowledge, any Automatic
Programming system will fall short of that ideal in the foreseeable future. But progress in producing
more capable and active Automatic Programming systems depends entirely on the ability of the
researchers to understand and model the programming process. A useful programming model must
cover a variety of tasks: the host of ways to specify programs, program construction issues,
verification and debugging, and so forthO). Yet this understanding is possible because the domain is
limited to one of processes, programs, and algorithms. The diversity of this knowledge allows
different aspects of the total problem to be researched separately. The investigation of these
independent areas contributes to the long-range project, while in the short term techniques ore
discovered for extending existing software systems. Thus we can envision interactive Automatic
Programming systems which work together with a novice to produce a program from some process
description. The efforts of this dissertation are directed toward this kind of framework, i.e., a user
using natural language to interact with an Automatic Programming system.

A system of this kind must have some basic knowledge, including natural language
understanding, awareness of programming concepts like variables, loops, scope, structure, and
debugging capabilities, all of which must be relatable to the human. The need for a progressive

(i) An overview o' Automatic Programming can be found in [BALZER 72].

 , , L . ^^ _U , ■ ■■ - ' . L- ^-^ _ „^— ,^ ~..l^^.-.-Ji ..^..^^ I.

iwm^mmtmim vmmAmiAMmiimivm'm-mm mmimj-min**. wMiirm'nmvm'mip-'^-umm&m'*" '.'»■■'|- '-"v ' -^— "wit" ^"»4^" l,lW,»)i

PROBLEM STATEMENT

dialogue suggests that the form of internal representations should be close to the user's original in
order to promote a natural basis for communication. Though the present report does not
directly deal with this concept, it is the basis for many implementation decisions. The hypothetical
nature of an Automatic Programming system forces any claims and assumptions to rely on intuition
rather than strict results. Still, as an experimental study in representation, the results are
independent of the Automatic Programming framework.

The system to be presented, called XREP, consists of a language, an interpreter, a monitor, and
a debugger. The interpreter and monitor execute the program while building a representative graph
which is used by the interpreter to carry out evaluations and by the debugger as a history of the
process. The language, called PLX, is designed to address three issues: (1) the program construction
task faced by Automatic Programming, (2) the methods used in natural language for generating jnd
addressing objects, and (3) the simplification of the error detection and correction task faced by a
debugger.

Although not designed for any particular Automatic Programming system, XREP will be placed
within a hypothetical framework in order to better focus the rest of the report. Figure 1
displays this system showing the transformation of the original input into a final program.

INPUT
INITIAL

FIRST PASS
TRANSLATION

PROGRAM ANALYSIS

TRANSLATE
TO PLX-
STATIC

ANALYSIS

XREP-
DYNAMIC
ANALYSIS

COMPILE
AND

OPTIMIZE

p OUTPUT
'PROGRAM

NATURAL
LANGUAGE

RELATIONAL
FORM

PLX

PROGRAM

PLX

PROGRAM

Figure 1. A hypothetical Automatic Programming system

The original input is given to a first-pass natural language translator which generates some
internal form, say a relational description of that input. The next module massages that description,
fixing whatever it can with its static analysis. Some of its actions might include spelling correction,
reordering procedure parameters, altering colloquialisms, supplying obvious missing information, etc.
The PLX program, the output from that phase, is then passed to XREP for an execution analysis. The
PLX program then enters a compile and optimize phase resulting in the final product. For the
moment we will assume that interaction is possible at any stage of the processing.

■ - ~^—.~ ■ — — - ■ — •

PROBLEM STATEMENT

Within this framework all of the errors detected by XREP's debugger bre English situations
which may cause problems for an Automatic Programming translator. Many of these problems can be
better resolved at execution time, when the dynamic context is available, than within the static
environment of a translator. XREP has been designed on this principle.

The adequacy of all the internal representations, programming language included, should be
measured by the success of the debugger in having compatible and understandable models of the
problem and its solution. Both models are required to understand a program's behavior and have
expectations of its results from which its correctness can be tested or verified. Understanding
programs -- the primary focus of Automatic Programming — can occur only in such an environment.

Generally an experimental system produces some characteristic behavior to support its claims.
However, the proposed debugging methods of XREP are intended to augment the capabilities of an
Automatic Programming system by providing a powerful enough framework in which to address
program construction issues, as well as do debugging. They must therefore be evaluated in this
larger context rather than simply as debugging facilities. Although we have obviously not built a
ccmplcfo Automatic Programming system as part of this effort, we will attempt later to show
how the features of XREP could facilitate such a system.

1.2 PROGRAM BEHAVIOR AND KXPECTATIONS

Analyzing a program's behavior involves some expectation of its results, many of which are
independent of any particular task. Halting, avoiding numeric overflow, and addressing proper d-jta
are expectations relevant to all programs, but specific expectations are obviously present as well.
When they can be formally stated, the program construction task can often be automated and proved
correct(ii). Unfortunately, few processes (especially long ones) can be defined so functionally. Yet
informal expectations are used by human programmers to help check out their product. XREP's
"intention mechanism," which is used to monitor a program's execution, is informal in the same way.
The mechanism's function is to help the debugger detect flaws (i.e., deviations from exoected
behavior), not prove correctness. Still, the debugger car, extract much information by noting what is
expected and what is produced — information certain to be useful.

Given this setting for a monitor and debugger, the next section will describe the. struciures
and formalisms on which they work.

(ii) This research will be reviewed in Section 5.3.

 , , - - - - ■ ■ ^j ■■ ■ --■-- •— ^'f*-'-" -■ in.i„iM*

PROBLEM STATEMENT

1-3 REPRESENTATION/1L REQUIREMENTS

The choice of representations in XREP involves two design criteria- structure n«H f« K

involved and ^TjLl^yZ ZtZl T-oX ''' Pr08rammin8 langUa8e

is .he. coh8rent o^n.a.ion which Sive^p'^VcVaSv^r":,^^::;3" ^ ^'^^ "

behavior'LTntelnbr^'D^TeTet'lrlt"8" ^J ,he Pr0CeSS 'ieScri,,ti0"' 8"-tl°"

e^h::!::s,:owo:rh8:„f:rert^or:orin8 i,s resü"s- a—m °< ^ ^^'«-"'

Generic Data

can ac^S;:,i;VnudSe
a
f
ddr;",rc

eai
0lr

tia,a ^ an "r""16 0' h0W an Aul0ma"c P-Sramm,n5 sys,em
programmer needs lo ~L t ■ , P™8i-»r"hg languaees have precisa models of data. If a

makes all subsequent references ^1^,7/1 y The P^ciseness of such an assignment
ambiguous references as their ^1^^^ anS, 0n the 0ther hand' use anaPho^ «nd

Huency, they presen, severe p.Olems for ^ Z^L^t^iln^ *"" "^ **

^^r äH~ vf-~ ~< ■~-
^hrr~^a---

PROBLEM STATEMENT

The Profirramminpr iMUßunga

Due to the nature of this project, a new production language, named PLX, was designed for
XREP. Because they did not nc;ed to contend with "features" of existing languages, the constructs of
PLX could be designed to focus directly on relevant issues. The justification for a production
language has an even deeper basis. Production languages have a simple control structure; in fact,
production languages have too simple a control structure for most programmer's use, which explains
not only its absence in prograrnning shops but also its usefulness for analysis. Understanding a
program's execution is simplified with a well-behaved flow of control. However, the nondeterministic
behavior of some production systems, including ours, can inhibit error detection by trying fruitless
backup instead of recognizing a true flaw. To aid in this case PLX has a "terminal" operator which
the monitor uses in trying to identify types of failures as they arise.

Another feature of production systems is their inspectability. Since debugging is a primary
concern of the system, the programs on which it operates must be easily modifiable. The production
rules maintain a perspicuity which make them ideal for this task.

Finally, though not normally usea in this w^y, production systems can impose a top-dovn
discipline on program creation. The complexity of acquiring a problem statement from a human
seems to dictate that an Automatic Programming system play an active role in the process.
Top-down methods provide an excellent framework on which to base such a dicilogue, with the
nonterminals of the language acting as reference points for maintaining continuity. Unfortunately,
traditional production systems tend to defeat the top-down benefits by havin« unnecessary
nonterminals solely in order to produce the appropriate structure. PLX solves this problem by
reans of a structuring convention. The acquisition of a program is not a concern of this dissertation,
out ;he structuring issue is.

Execution Modelling

A model for understanding a program's execution must account for many details not found in
most systems. A Program Status Word or execution stack is not adequate for analyzing execution
behavior. Besides presenting a current view of a process in the form of a program counter and a
data base, a model must also address dynamic issues accounting for the history of the entire
execution process: how control was passed and gained, when and where variables were bound, and
what data are available to a particular event. At the same time, that model should reflect the
program it represents. In other words, the production language and execution motel should
accommodate each other; the language, by simplifying the model's construction, the model, by
maintaining the structure imposed by the language.

In XREP a threaded tree structure, called a Process Elaboration 'Jraph (PEG), and an Access
Graph, which is just another view of the PEG, .atisfy those requirements. By emphasizing control
issues and maintaining closeness to tne production rules, the PEG becomes the focus of the program
modification algorithms. The Access Graph emphasizes a different picture of the execttion by
accentuating access and scope issues. That is, given an event in the Access Graph, the data in its

5

J

PROBLEM STATEMENT

scope of reference are immediately observable. The discussion of the generic data types depends
upon this view of the PEG, since a graphic representation of all the bindings is necessary if
complicated references are to be accurately resolved. The global nature of the Access Graoh
provides a natural environment in which to view structural flaws that cause access errors.

Program Intentions

Without a formal expectation of a program's performance, any debugging or understanding
system will only be able to react to task-independent problems. The ability to match expected
behavior to actual behavior will give a goal-oriented direction to debugging efforts. XREP accepts
an intention string for exactly that reason. The string, a sequence of "observable" program events,
is mirrored in PLX by a TERMINAL primitive which generates the "observable events." The system
will try to match this output against the given intention. The intention string is not meant to provide
a method for proof procedures; it is merely a tool to help the system produce more correct
programs.

The consfructs presented in this section are designed to focus on debugging and intentions,
w'iile also raising several side Issues important to Automatic Programming. As representations, their
adequacy can be judged only by the methods which operate on them. The next section will describe
the interit and scope of those methods.

1.4 DEIiUGGINC EXECUTION FLAWS

The extensive preliminary discussion was intendeo to stress the environment concept
fundamental to this report. The discussion of debugging will unify all the formalisms of XREP
by providing a coherent model in which to picture the execution process. Figure 2 depicts XREP as
two logical parts: a program executor and a program debugger.

A SYSTEM MONITOR is responsible for executing the PROGRAM written in the production
language. The monitor records the PROGRAM BEHAVIOR in the Process Elaboration Graph while
checking that its behavior is consistent with the EXPECTATION, existing in the form of an intention
siring. If a difference is detected, the DEBUGGER is called. The first step is to IDENTIFY the nature
of the error. That involves both CLASSIFICATION of the problem, and an EXPLANATION for its
existence. Then CORRECTION can be attempted.

-■ -- .. . -^ . '*Mml .1 - - -- ■■- - . . - . .. - ..

PROBLEM STATEMENT

r*
i
i

PROGRAM EXECUTION 1

EXPECTATION-

INTENTION STRING

SYSTEM
MONITOR

USER

PROGRAM-
PRODUCTION
LANGUAGE

I
DEBUGGER

IDENTIFY

CLASSIFICATION

EXPLANATION

CORRECTION

Figure 2. Model of XREP

problelTwhTcal ZT^tlr'' '' '^ '"!b''"e' "" be IW,ed ,0 re,lecl «•"» of the

— ■_ .. rrm i-iiuli irimnniii n niHiirffi ■ - ■ ■ ■ - - J

PROBLEM STATEMENT

is associated with loop co >ol, and the last deals with pronomial references. All four exemplify a
position taken by this system design:

Many Automatic Programming trai .lation problems can be resolved better by
studying dynamic behavior rather than a static description.

The basis for this decision comes from the intuitive methods used to resolve the problems. All seem
to be naturally suited to execution analysis.

Struclurnl Depfndrncirs

Computer science has become very conscious of structured programming(iii), a concept which
is important mairviy because it forces a programmer to design a solution to his problem carefully
before coding it. The benefits of following the disciplines imposed by structured programming are
numerous: the programs are easier to read, understand, and modify. These advantages are gained
because of the modularity resulting from delaying /arious design decisions until necessary. That is,
any "abstract level" of the program contributes only what it must to the overall design. English
descriptions of process are notorious for doing exactly the opposite. Information is presented with
no regard for the programming concept of structure. Neglecting elegance for the moment, Automatic
Programming systems will have a difficult enough problem just in determining dependency issues, i.e.,
what data is required for a process to operate. A linear (i.e., nonhierarchic) representation of a
process, coupled with a global data base, loses all the structure inherent in English. Again, the
informality of English is to blame. However, the structure is there; otherwise anaphoric references,
ellipsis, and ambiguity could not be viable communication tools. Automatic Programming must find
that implicit structure to be able to write any program, structured or otherwise. The debugpng
effort for these problems accentuates the help that execution analysis can provide.

Consider an Automatic Programming system, structuring a process stated in English, trying to
deal with a reference like "the next to last person." If this reference depends on the dynamic
behavior of the program (as do most such references) the Automatic Programming system will have a
hard t^me discovering, statically, whether at least two persons exist in the current context for that
reference to make sense. This problem is the primary structuring issue. Assuming that the
sequencing of the program is correct and two players do exist, its structure may present a context
in which only one person is accessible during the "next to last person" request. In that case XREP
will restructure it to make sense. The modification is made possible by the generic features of the
variables and the history of the process maintained by the Process Elaboration Graph. The naming
conventions imposed by typical programming languages are too rigid to facilitate this kind of
analysis. In this example the problem is too much structure. A related case occurs when the "next to
the last person" request succeeds, but points to the wrong person; this problem will be resolved by
a similar analysis.

(iii) See [DAHL 72] for a state-of-the-art discussion of this topic.

8

■ --■ --- ■ ■ ■-'

PROBLEM STATEMENT

Lack of Strncturo

The other structure issue appears when a program is running correctly, but is too linear;
access to unneeded information typif es that flaw. That is, an event has more information than it
needs to accomplish its task. The for,- of the generic data suggests a method of detection by having
the system maintain a count of each generic type produced. If the associated maximum is known and
exceeded, a problem of this type can be hypothesized. The position taken by the debugger is that
an iterative process is a» faull. The debugging effort involves finding the iteration point and
modifying it so that the overflow is correde ;.

The impetus for handling this problem comes from future execution considerations. Later
accesses to this data may be ambiguous because of the extraneous data. Also, this kind of program
structure is not conducive to future modifications. Since the condition is detectable, fixing it seems
appropriate. Mumans handle this situation by automatically maintammg contexts containing only
necessary information. Unfortunately, this structure is not transmitted in their description of
processes. Still, experts in venous fields have the ability to effectively manage their information by
structuring it to ease future access to it. The debugging effort here attempts to do the same in this
special case.

Loop Contml

Erroneous loop control is another "feature" of natural language. Examples will demon-.trate
how humans determine iteration points dynamically from imprecise and ambiguous algorithms This
problem will be viewed in terms of why it exists and how it might be resolved given the environment
presented thus far. Only a partial solution will be offered, with no implementation, since a complete
analysis of this kind of situation is the focus of other research projects.

/Imhiffuou» Rofrrrnrrs

Anaphoric references present the basis for the next analysis. Consider a reference like "the
first one. Syntactic clues may not find the referent if the situation is ambiguous. English abounds
with such constructs, forcing language translation systems to deal with them. The PLX generic data
forms provide a natural Interpretation for this problem as an unknown type, while the intention
string gives the capability to resolve it. The ease with which this can be done strengthens the
position to delay binding decisions as far as possible.

The class of errors reviewed in this section is not meant to be complete. They cover a
variety of typical situations which arise when dealing with natural language. The formalisms attempt
to simplify the manifestation of those errors, thus enhancing the ability to correct them. If tK.-se
problems can be solved, the fluency gained in communication with humans will allow an Automatic
Programming system to consider the program construction issue more directly.

PROBLEM STATEMENT

1.5 PHILOSOPHY OF PROGRAM UNDKRSr/lMDINC

Since program understanding" encompasses such a variety of efforts, a review of the intent
Of this dissertat.on is needed. Rather than formalizing requirements which define understanding we
have presented an environment in which understanding can be demonstrated. This environment
includes several new constructs, whosf inclusion is justified by the resulting methods The
advantage of this approach is also its weakness; the flexibility gained by having loosely connected
formalisms prevents the consistency required for proof. Thus in most cases methods are heuristics
while constructs are justified in order to promote a desired behavior. Not enough is yet known
abou programming to impose enough structure to formalize Automatic Programming Yet useful
results can be extracted if completeness criteria are not demandad. The environment concept
occupies a rrvddle posit.on in a spectrum which nas batch comouting on one side and total Automatic
Programming on the other. There is no need to sit at one end. waiting for enough progress to make
the complete jump to the other. Th.s philosophy addresses the immediate applications made possible
by Automatic Programming research. ^"«■u.e

10

- -*- ■ i IM^M ■ m*M

*.-

2. AN INTRODUCTORY EXAMPLE

2.1 INTEST OF TilE E\ AMPI.E

Dartir.Lr J A S ,Chap,er IS t0 intr0duce XREP and lts formalisms in the context of a
m/thnl P ; t03 y5'S ^ ,he En5llSh Statement f0r tha, examPle wil1 disclose communication
examl ^ natural language. Sect.on 2.3 will present a possible program for this
example emphas.zing spec.f.c constructs of XREP's production language suitable for these

oZeTl meth0dr/n execut'on of }h'5 P^S- * then shown via the process graphs.
fonowed by a genera cüscussion of how the intention string mechanism can be applied to this

for d^r h 80H J5.*0 Sh0W that the SyStern COnstruCts are b0th natura, t0 English and adequate for describing and debugging processes. ■«OH««"«»

11

2.2 THE ENGLISH STATEMENT

Backgammon a two-person game, is the setting for the example. The rules for the Leglnnlng
of the game are as follows: JB1"""^

Thfi Bam* Man, hy having varh player roll a di*. Th* player with the larne«
value makes the first move.

This example has several distinctively English characteristics which are ignored by computer

hlTt5" LT ^ d,SCUSSed here in terrriS 0f ,he En8lish' whil« ^ "ext section will review them in terms of their impact on XREP's production language.

.]be ^Sinning of the statement. "The gome starts by" introduces an immediate problem
by implying ha the top-level structure of BACKGAMMON is the start followed by the rest of the
Same, without danfymg whether the rest of the game depends on the start. Humans do not require
explicit ins ructions to help make distinctions of this sort. However, if an Automatic Programming
system ,s trymg to structure this process and the distinction is important, any tentative dec.^ on

TH^O y 'I' r5^^ Sh?,d ^ ;>imple t0 Und0 if pr0ven wr0n8- *"*><>' reconstruction effoo? this common situation would be undesirable.

AN INTRODUCTORY EXAMPLE

a die- ^^^c::e^^:::^ud^ - trr-The f a:e se8men{ • • •each ^ ">m
independent of the others The evert c^n h* !r'S T^' *Me the action 0' each P'^r is
overall action, i.e., the dferolW or !n L , T^t '" ^ leaS, ,W0 levels of abstraction, as an

vew implies t'he ^^ encV ^"d^ b7e ^ "* "^ * ^ The fo--
retrieved only by a 'equest Ch ch^
second line of the aame «id "Th. a

|
an0*ledges ,he 'dependent actions. For example, If the

because the player fZertdoljlT Tf ^ ^ m0Ve'" an ambi8UOus ^n ari es
Since no indi'duaTp aTer e ists m h t'rn r edSe ^ mUlt,pl9 "W™** of the die-roiling ün!t
to the d,e-ro.l1ng SZ?^ ^^^nr^'—- ^ * ** ^ * revest

anaphr::f:^^^ti^^^:!;;^te
n;0 T'^ me,hods ^piified ^ ^

by type and referenced by that type w'h !n lw ft? ^'l TyPICally' 'mfor^^ ** created
some context, enough clues usually exisT to ^T* ^^ SinCe the data is created in
this assumphon; the predTcate format ^ one wav « T"^ Anaph0ric reference is based °"
this reference is also the one nece s 1 to J* ^ characteristic information. The form of
previous paragraph. The predicate ^'h^T" * CrPOnentS 0f the unit introduced in the
tbe unit, format, thus distfnÄ^ "e^^^.;:; ■^^'^^'^ of

progra^^^^-^^^^^^^o another ^^ ^™ ^ and

parameter -passing mechanism to dent ^a procedure Ind^t Pr08ra7in
r

8 ^^ USe a formal

it creater, information as necessary -xPX the m^ H i ^ 8 ^ n0t- lnStead

context and "find" what they need In the e ' L. . ?r ^^^ to search their current
of the die. The English desertion does no T ' 'H f;rst:m0ve; W*"'* * to follow the rolling

than "the p.yer wittfthe l^es^vr^ec^t^st; .t:3*'" the ^ ^ * t0 USe 0^

to mod^:;; ^:;^^:^:a;: ^^^s ™;n any way-The des^de—
a desirable feature for a target iZ.lV >t A ^ presumPtl0n that "closeness" to English is
modelling English, the Lg f , "^ 3^' l"8"^10^1^ jamming system. By accurately
the manifestation of an er^relÄ W,th SPeCifyin« W™. *"* -king

12

 — _*

MMBMlBWWwwwiwiamwwwtuitMimwww-iiw^^ im]ii.iiiijiii.ii.jj.:)i

AN INTRODUCTORY EXAMPLE

2.3 /] Pl.X PROCR/IM

intrnHFl^re ^ Sh0WS a Pr05rarn Wri,ten in PLX which rePresents the BACKGAMMON segment introduced in the previous section.

BACKGAMMON s- START , REST-OF-GAME
START := (GENSEQ PLAYER -> ROLLDlE) -> COMPARE
ROLLDIE := (GENMEM DIEVAL)
COMPARE !- (INSERT PLAYER.dMDEX MAX DIEVALU -> FIRST-MOVE
FIRST-MOVE :- (TERMINAL PLAYEP.-l 'MOVES')
REST-OF-GAME :- . . .

Figure 3. Rules for beginning of Backgammon

In order to ease the discussion, the production rules are simplified and use " " in place of
program segments irrelevant to the discussion(l). After the first rule is initially viewed abstractly to
explain the bas.c operations of production systems, all the rules will be inspected from two
standpoints: their role in the program and their derivation from the English.

A rule has three parts: a left-hand side, a rule separator, and a right-hand side. For the first
production they are BACKGAMMON. ":-", and "START . REST-OF-GAME" respect.vely. The left-hand
sides, also called nonterminals, represent the names of processes whose definitions are given by the

RErSTe-SOF-nGAnMEri8ht'hand S,deS' ^ BACKGAMM0N IS a Process made of ^0 parts, START and

To start operation, the production system finds a definition for its distinguished beginnina

BACKGAMMON" f T "fOT
BACKGA^0N- Once a definite is found, it is executed. So. to play

BACKGAMMON, first START is executed, then REST-OF-GAME takes control. Notice that since START
is also a nonterminal, the same process that was applied to BACKGAMMON is applied to START This
recursive expansion of nonterminals stops when terminals are encountered(ii).

The symbols between the events of the right-hand sides ("," and "->") have no bearing on the
order of execution; control in XREP's production language is the same as that in standard production
systems. Their role will be explained shortly, during the discussion of the individual rules.

The first production

BACKGAMMON :- START , REST-OF-GAME

(i) A complete definition of the language is given in Chapter 3.

(ii) See [GINSBURG 66J for a formal view of production systems (or rewrite systems as they are
often called).

13

^-—.-i........ .. i.,.^. i^^.

AN INTRODUCTORY EXAMPLE

is a simple rule composed of two nonterminals START anri RF«;T nc PAUC I/UU-I *,

even,]'Zf TjjZ'R^lTal^T I" 7^'°" '"'"■ 'he SC0,,e '" i",w'"a,i0" "" ■""*

r=~e~HSS^^
in.or.e.ion can be made ^oL, or so»/d^l'nf o, TTA^ ^nr^ " «7-0^^^ ^

r'p;r;;ry of,hes^rn
s^:o;bo,h d'— ~- -" ^^X

indt endlnl "iMh».'«^'10';' ,,;le• "'" ,S h"'0,hes'2ed. """'"B 'hat START and REST-OF-GAME are
indvendent. If that assumption [s wrong, usl replacing ",■ by "->• cdrrecls it The smnllrit« nf fhi!

aepenaencies seem to be determined easily and dynamically as needed This sarm» Hv/n«^

The second production

START := (GENSEQ PLAYER -> RQLLDIE) -> COMPARE

fh^^rtr^GE^E^rATER-r^E;^';^, Er,gli5h ^'T"'' 'taCh P,ayer r0llS a die'"

.ha, x^:: :h
cr;;ent

Th;h,c-:ort::ai:: r /r^ ^''vrs :ricf-i

COMPARE exists as a convenience to distinguish the action of rollinE the dice from fh-

KÄ'u^inr "■'■■separa,es",rom GENSE '• COU™E --h- -«•'« ^

The third rule

ROLLDIE :- (GENMEM DIEVAL)

has an example of a simplified use of the GENMEM primitive. Notice that the English did not describe

14

-a—^^—^^B— — ■—

AN INTRODUCTORY EXAMPLE

how to "roll a die," so inclusion of this rule reflects its need because of the action of the next

of^theseTDIEVA^ CaSe, "^ Pr0dtJCti0n defines the R0LLDIE process as the generation of a member

The fourth rule

COMPARE :- (INSERT PLAYER.dNDEX MAX DIEVAL)) -> FIRST-MOVE

represents the statement "The player with the largest value moves first." The rule contains the first
example of a reference to a generic data type. PLAYER.dNDEX MAX DIEVAL) follows the general form

n y>^P^Xp, Where "exp" lS some selector unction pointing to a specific instance of "type " Mere
PLAYER is the type and (INDEX MAX DIEVAL) is the identifying expression.

INDEX is a function which searches the appropriate GENSEQ structure in order to find the
required item -- m this case, the largest DIEVAL Since each player is associated with a DIEVAL
pointing to a particular one identifies the PLAYER who rolled it. The affect is like saying JOHN's 5 if
5 is the largest die value. '

Once the appropriate player is found, INSERT sets him up as the generator of the FIRST-MOVE
event. In this sense it has the same effect as the compound event

(GENMEM PLAYER -> FIRST-MOVE)

The difference is that no new instance of PLAYER is created, an existing one is merely repositioned.
anticipating future reference. So, if a descendant says "He moves ..." or "The last player
mentioned," the identification of the referent will have a firm basis. This method of having

UTMC^V'^ ^ their areüments is Part of a heterarchical system design espoused at MIT
[MINSKY 72] and examined further by [WINSTON 72]. It proposes that "smart" systems should know
how to find relevant information themselves. The strict hierarchy imposed by formal parameter
passing methods is not natural to English.

The next rule

FIRST-MOVE := (TERMINAL PLAYER.-l 'MOVES')

results in a terminal output event. That is, FIRST-MOVE produces a string like (JOHN MOVES)
representing the end result of a process. Another example of a generic variable, PLAYER.-l, occurs

■ ♦ Si Ivtn AL eVent- Thl5 time ,he Predicate refers directly to a position - in this case, the
fll;; .R mentl0ned The ease of this access comes from the work of the INSERT primitive, i.e.
INSERT remstantiates a type's value, while type.-l retrieves it.

The intention string, described later in Section 2.5, is meant to match the composition and
sequence of these TERMINAL events. By placing the TERMINALS judiciously, various levels of program
detail can be revealed for testing or monitoring purposes. For now, the TERMINAL represents an
explicit statement of the computation's status.

15

--'•■-'^"-'^', ■■-■■'-- -

AN INTRODUCTORY EXAMPLE

This section has viewed the production language in terms of the computing capabiii.ies
necessary to write programs. The next section, in presenting the process graphs, depicts the
production language as a vehicle for their construction.

2.4 THE PROCESS GRAPHS

l he structure which maintains a recorc! of a program's execution is called the Process
Elaboration Graph (PEG). The information it contains and the form it takes were influenced by a
variety of design decisions dealing with the production language, the generic data forms, and the
debugging capabilities. Though reflecting all those issues infernally, the PEG requires another
conceptual view, called the Access Graph, to help depict the spectrum of claims made for it. By
presenting a view in which the production rules mamtam their original form, the PEG relates a
program and its flow of control, thus becoming the focus of the debugging algorithms. The Access
Graph, on the other hand, emphasizes data and scope issues by making nccess paths visually explicit,
a feature not present in the PEG. Through the PEG is the only structure maintained by the system]
the Access Graph exists to offer a more natural structure to view when access is discussed.

Assuming the players are named Joe and John, Figures 4 and 5 picture the Access Graph and
the PEG for the current example. The difference between them has an intuitive basis which will be
reconciled later in this section. First, the construction of these graphs will be compared to the tree
produced by standard rewrite systems in order to emphasize the role of the event separators and
the form of the production rules.

16

^__^_^^^_^_aM_>a»i .-^-MiMMMMk

gl^llWWPWWW«w»~™»-t—I—^-^-"»^iWW^P—W»«»—^—»W«»P~-.»—»»—1 m-www«^^WBipH«ii«ni . ii ii iH^mwrniiii^nMa

AN INTRODUCTORY EXAMPLE

BACKGAMMON

START

GENSEQ

REST-OF-GAME

I

PLAYER.2^-JOHN

ROLLDIE

i
GENMEM

DIEVAL.l—1

Figure 4. An Access Graph

17

- - - - - ■ -■ ■■■ ■
 , . .. _,...

mm^^mmm n i i ^m^mmmm <•'">' -in <^mmm<nim wtmnmmmm^mmumm ■ < umurmtvm

AN INTRODUCTORY EXAMPLE

C BACKGAMMON

START

C

REST-OF-GAME

GENSEQ

PLAYER.!—-JOE

C

COMPARE

INSERT FIRST-MOVE

ROLLDIE

)

J C ROLLDIE) (PLAYER.1 = JQ?) (TERMINAL^

^ GENMEM ^ ^ GENMEM ^

c

(^"JOE MOVES'1^)

DIEVAL.1^-3^ (mEVALJ^T)

Figure 5. A Process Elaboration Graph (PEG)

XREP and Standard Production Systems

The functional events, like GENSEQ, and the event separators make XREP's production system
different from others, yet by treating the functional events as nonterminals (while ignoring their
semantics) and by applymg one transformation based on the event separators, the rules can be made
to look like those of other production systems. The transformation is as follows-

1. Whenever "A
and "B' :- C . .

B -> C . .." appears in a rule, change it to "A := . . . B'

18

-^. - ■■■

WZ

AN INTRODUCTORY EXAMPLE

2. Whenever "A :« . . . B , C ..." appears, replace it by "A :- ... B C "

Applying these transformations to the BACKGAMMON game, the rules become

BACKGAMMON
START
GENSEQ'
COMPARE
INSERT'
FIRST-MOVE
REST-OF-GAME

START REST-OF-GAME
- GENSEQ'
- COMPARE
- INSERT'
» FIRST-MOVE

A "standatd" execution of this program produces the tree structure shown in Figure 6.

BACKGAMMON

,

START REST-OF-GAME

I
GENSEQ'

I
COMPARE

I
INSERT'

I
MOVE

Figure 6. A standard tree structure

This traditional structure pictures an event's access path, the path from an event to the root.
By containing all its direct ancestors, the access path becomes the environment in which each event
carries out its task; in this sense it is like the control stack of traditional programming systems.
Other than the expansion of the GENSEQ and INSERT, the tree in Figure 6 has the same structure ac
the Access Graph of Figure 4. Vgt although Figure 6 depicts the context concept, the form of the
transformed rules loses all the structural perspicuity inherent in those of Figure 3. The event

19

- .-^ - , i — , u , ^- _* - - .. ._-^ J

fwi mi n\m ■f^Q^RM^ iWWU.il-MUlll uw1.M.->.w.ii..,.Ilwni.|i|iHVMiinwi.w!.mi .1 »— BBiri

AN INTRODUCTORY EXAMPLE

separators act as more than syntactic devices; they provide the interface which gives the production
rules the structure necessary to model a process naturally.

Though the Access Graph's construction follows easily once the convention of the event
separators is known, by highlighting the access issues it distorts the relation between the form of
the production rules ana the sequence of their execution. The PEG maintains that relationship, though
at the expense of the access issues. Conside- Figure 5, the PEG corresponding to the Access Graph
of Figure 4. Its main feature is its closeness to the production rules. In fact, if the event separators,
encoded in the shape of the events, were ignored, the PEG would represent an implementation of an
n-ary tree generated from a standard production system. For example, Figure 7 shows some simple
rules from a standard rewrite system and its associated tree, both in a standard and implemented
form. In the standard form each father points to all his sons directly; in the implementation of this
kind of tree (since that is not a convenient form) each father points only to his first son, who in turn
points to his right brother, with the rightmost brother pointing back to his father.

/I\
BCD

A
B -»C -»-D

X
l\
X -^Y

W w
= BCD
= X Y
= W

Figure 7. Rules and trees from a standard rewrite system

The difference between the implemented n-ary tree conceptualization and that of the PEG ie
in the access path. In the former case the path is constructed by visiting all the father nodes, i.e., go
right until an "up link" to the father is found. However, that method does not work for the PEG
because of the interpretation the event separators impose on the rules. Instead every left brother
is visited (hence the two-way links) and inspected to see if it is in the access path. An event's
inclusion depends on its shape, rectangular if a "," follows it, or oval otherwise. Basically, a
rectangular event means it is protected, an oval event means it is viewable. Thus, the method to
determine the access path in an PEG, trivial to define in an Access graph, is to (1) visit the left
brother, (2) if it is oval (i.e., viewable), it and all its descendants are included; if it is square, the
event is protected and not part of the access path, (3) if a leftmost node is encountered, move up to
the father and continue from step 1. This algorithm produces th-: same access path that can be read
directly from the Access Graph, with the join in the Access Graph corresponding to the viewability
of the GENSEQ node by COMPARE in the PEG.

20

AN INTRODUCTORY EXAMPLE

PEP Th! ^l!0^0f '^^M Pa,hS iS CruC';,l ,0 understandin8 ^e duality of the Access Graph and the
manmna l !' aCCeSS Pa,hG defineS * U^e tree' The PEG' u"der th^ «cess path
mappmg, thus represents one and only one Access Graph, i.e., the Access Graph is just a
econ 18urat,on of the PEG Both exist to focus on different aspects of execution e.phas zed by hi
epor . For now th.s mtu.t.ve concept of access paths will suffice, Chapter 4 will detail this

lupic Turtner

l.anpruaffp Impnct on ihr Prorosx Gmiilis

or ,Sev
rf
ral'an5^5e claims madö in the previous section have a visual effect on the process

gr.phs. Consider the GENSEQ structure as an addressable unit with independent branches The

GENSmn3 H tH^p'^ ".f ^ and al1 'ts branches because of ^ "iewabi ty of Ihe
,n COMPARP '"H T ^ ^ SrPle 0b?ervatl0n that the A"ess Graph has the GENSEQ structure
in LOMPAREs direct ancestry). But an event within a particular GENSEQ branch (RQLLDIE for

ITetlVr ^T ^K?" branCheS- The Acces& Graph mere^ ma^each branch separate
ThJ ?n n H T ^ branCh fr0m ,he 0therS by makme the bindings rectangular. Notice tha
the jom in the Access Graph (after the DIEVAL's get bound) is conceptual in the PEG, reflected oNy
by the viewability of the GENSEQ node. y

ar.nh ^T^T' "^ ^^ ir0m ^neraU^ ob>e^' ^o contribute to the visual impact of the
!tr?sdno Vh! add'e:S,nS mfNanisms force the spatial positioning of the data within the graph,

whe e if 0ote/mP0 c! 0 'T1"5 n0t 0nly What Value an 0b^ct has- but k^ing when and
th.pL,- f V! Sau m0delS alS0 have ,hlii Inf0rmati°" »hough only for a current branch of
the execution), but generally make it directly available only as a debugging tool.

"PLAYE^r inF'Xa?le I. lu" Jrr55 m"UeMCe iS in the ^introduction of the binding
PLAYER.K-JOE underneath the COMPARE event. By anticipating PLAYER.-l requests, the graphs

exoectTTh *, em";0nment i0r future events s0 ^ th.s specific information is «T™ they
expect it. This implementation supports the English which is likely to follow in the example:

". • • The player with the largest value makes the first move He

Given no other information. PLAYER.-l is a likely translation for "He." The graph is ready for that
assumpt.on by supporting the kinds of relative addresses used by English.

KflviPw of the Process Cm/j/is' Features

whv thP. 'n;°;mal disc
k

usfiün °f the process graphs was intended to give some overall feeling for
why they ex,st and what information each purports to carry. The following features, used to
evaluate a process representation, act as a summary for this section by reiterating the main issues.

• The representation presents a dynamic view of a process.

21

- - ... -. - —. ■ - - ■ -

ii ^ ._ .r i :p«wpRpp^npWlUl^1U J, 11 l_i(■'iWLi.J.Ji f-nfmwmvVM. qi■ iI.I 1*1 u«linl■ppppn>*!iffWxwt,^', ^-''f!'"'»•■■*»' v >*'**■'*«■"■HWWffWflWP*t^!'«^.■■i.W-- Vl.Wi^lllJi^»^f.P'-.'l-,i -'■•*** ■ ■' * Wf|A- ■-J^lRWi*^.mm.*iMlWWB*.-,W!i'l■'«: 1 ■' - ' L ' P^^p^PV^^n

AN INTRODUCTORY EXAMPLE

wht d2.r5,:Lr„;zV™Xpr°s;':.r r;p:r,s ;vhe d— -—^w ,„d
only the contsxlual information wh cVis noceiat t, . - """"^ i5 reqlJ'red' t0 *m ""<
.n-o^ation to help d8bu68,ns ,n ^* Z^Z ^S^'^lZ'^^ ^ "*<

A spatial view of bindings is emphasized.

The flexibility of the "tvnpovn" ^,f, <„

Process repr'esentaHon'To separate the" ö2T0 ^ the da,a appear dynamica^ *™* the
information loss and an unnatura rom he ^andoolt nf^^M0" P0,nt "" 0nly lead to -
Process. Both the Access Graph andS^ of the binding

• The process representation should be easily modifiable.

^^^-z^^^zr Tilms drast,ca,,y-—*-"*• 'n to the next one: mentation should be amenable to such changes. This concern is linked

• The process representation should m.rror the corresponding program.

This condition is the main claim marie far tu* ocr

Process the manifestation of an e" is o t n e y ^o de ^t P:0?UC,i0n langUaSe- '" ^^ *
error can be difficult. An analysis of the PEG dunnVn t ' as^^ responsibility for that

Common ancestors can easily be found often ninnowÄ8'"8 "^ ^^ mVOlve d,SJOint bra"ch«-
thus the production rule involved. T eVio^c«; esTo HL K'^^ reSp0ns,ble for ^e error, and
PEG makes this information both f ndabVand usabTe ^ the Pr0ducti0n rule£ and the

2.5 STATING EXPECTATIONS IN PLX

detail A 'Z^^^ZZZZtZTZ™ " ^'"^ *°° ^
and depth of such attempts sugseel that H^ZZlL Lt '! debu881^ programs. The diversily

Prove that a program ,s JorrecUhe e i auTp d tlof sho^ ""'T^ Eve" in "^ to

tor rigor. MfJ"ea ror Proof should depend on the user's iudpmpnt judgment

components, how many checkout attempts have been m?!116"1 'he "''*' ,s <" "''»" P'Ogram

be considered statements of e«pectationPs,;Mh?BACKSMMotpro::armPle' '" ^ ,°U°*'m* ™

22

 —■— --- ■' - -■ ' ■ ■ ■- -—*

nm^^mm^mt^m^^^r^ ^m^^*^****^' mtm-mm" mmum i i Mia|i^m>«MBHmnnn><(Qim|

AN INTRODUCTORY EXAMPLE

1. (The program halts}

2. (The MOVE event is entered)

3. (JOE MOVES 3 AND 1)

4. (JOE MOVES)

5. (JOE ROLLS 3) (JOHN ROLLS 1) (JOE MOVES)

6. ^GENSEQ entered) (COMPARE entered) (MOVE entered)

All are valid expectations and can be useful at various phases of the program's development. The
second might correspond to a state where the start of the game is considered checked out, while the
fifth represents a full observation of the external events. The point is that any level of detail should
be possible for stating expectations.

The system supports this position by providing a TERMINAL primitive for this purpObe. The
sequential collection of TERMINAL outputs constitutes the list which must match the intention string.
In Figure 3 the rule

FIRST-MOVE := (TERMINAL PLAYER.-l 'MOVES')

has this TERMINAL event. An intention siring for this program segment would therefore be (JOE
MOVES). If the intention string is to be (JOE ROLLS 3) (JOHN ROLLS 1) (JOE MOVES), then the rule

ROLLDIE := (GENMEM DIEVAL)

could be changed to

ROLLDIE :•

Again, the level of detail depends upon the placement of the TERMINAL events

(GENMEM ClEVAL) ->

(TERMINAL PLAYER.-l 'ROLLS' DIEVAL-l)

By treating expectations this way, XREP can be used as a parser; the intention string is the
input, the TERMINALS guide the parsing. The production system is, of course, a perfect vehicle for
carrying out this analysis; many production systems are used in some kind of parsing operation. The
nondetermimstic behavior of a production system finds a successful path though the rules, while
masking false attempts.

Another observation about the intention string mechanism keeps it in proper perspective. The
ability jo state program expectations is a tool to aid in verifying programs, yet the intention string
has a "test-case" flavor with little formal basis. As a result, when a program ma. ties a particular
string, little more can be said other than the program matched that particular intention string. While
certainly no basis for proof, a successful parsing does have some measure of correctness to it.
Dijkstra said that this process "can be used to show the presence of bugs, but never to show their

2:-

L^aaatMuaMaaMa-UHutMa—HMM^aaMaaa,
- ■ —^

mPPfV^^iU'VIAIIll W"»".'!.' Jl ll-M.-LUII 111 1 i l«U_*ili (ilUiJUiUUBJI **mrmmmr' H9mwfP^imJii^HniHi!<i~. '*mm.imHmmtimmmi i. J1 •' PIJIHIH IIJIJ*I«>IIW-U,I iw^MJ11 ii-' «ppi ■ '•«»«Mjnnn

AN INTRODUCTORY EXAMPLE

absence!"(iii) Though true, that statement does not reflect how useful that detection can be in
debugging errors. Formal proof methods give few indications as to the cause of a failure when one
is detected. As will be shown, the intention string mechanism provides a good environment for
detecting and correcting bugs.

2.6 SUMMARY

By analyzing an English example from .., tomatic Programming viewpoint, several situations
unique to natural language and traditionally ignored by computer systems have been uncovered Not
only are they a basis for XREP's language and constructs., but they also represent the focus for the
debugging algonthms. The Automatic Programming paradigm offers both a new framework in which
to address representation issues and new criteria by whieh to judge their adequacy This
dissertation points to human communication methods as a source for its language representations
while claiming that close modelling of natural language problems plus the ability to resolve them
meuaSUrv0l

nn rePresen,atl0ns' adequacy and worth. The hypothetical role of Automatic Programming
makes XREP theoretical and open-ended; as a test-bed for representational ideas, XREP can ignore
the severe problems associated with producing a "closed" system. The results of succeeding
chapters should be viewed in this light.

I

(iii) O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Structund Programming, ed. by C.A.R. Hoare (New
YorkrAcademic Press), 1972, page 6.

24

'<^^mmmmmm '!^',l*"*««^w„,^^r7^ iBB«* i-ii-upimflv^w^iiPiwHiiittMJijmkwitiw!iiiiB?miiw?H^pi!(4U!if ■MuiLiiirwi' i ^ i[>'-"^mmpsKVmMUMt^f^^maB^m

3. THE PRODUCTION UlNCUnGE - PLX

3.1 PRODUCTION SYSTEMS IN GENERAL

^»1 der"^0"J> a computer program from an English statement by Automatic Programming
systems requ.res a d.vers.ty of exPert,se which starts with understanding and representing natural
language .nd concludes w-h debugging and proving the correctness of the generated program.

system inifthl0,^ ^ l^ '"^ ir,teractive environment, then both the Automatic Programming
system and the user must have a target to provide direction to any discussion. That target is the

S.alogue S Sener ^ ^^ fhe Pr0grammi,18 lang-Se is the vehicle of the process acqu sit on

l.na, J^ ^^^H'6 0f 0Ur Pr0grammi,1S language, PLX, thus rests on its central role as ;he
language m which the user s program (after translation) is stated and the system's understanding is

Pr^ert. s'o n^l5, na;ijräl ^ " ^ deC,Sned ,0 refleC, ^ handlinß 0f VariableS *** ^* propert.es of natural language in a maintainable manner, and to address the computing ,ssues which
anse m understanding programs: what computer resources are needed during execution how

^'s rame:^) reCOrded• *"* ^ ^ ^^ "" be USed t0 deb^ ,he P^Sin th^

Although our main concern in this report is with the automatic derivation of computer

thelTn nat"':1 lanSUa5e ^^^ We mUSt f™ devel0P a detailed understanding^ how
Iror!« ^r5 W"; be;eP'-esented *"* h^. as we will show, this aids in the automatic derivation

fZuZ I , T I .PLX ,hlJi dePendS n0t 0n h0W Wel1 '♦ COmPares ^ «'her programming
Sd h 'th . r Wf' i reSPOndS ,0 the exPressiveneSs of English and the functionality questions
PLX concent ^T ^^^ ^erat°r and ^^ugger. The first step in our evaluation of
KLX concerns the decision to make it a production language.

Psyrholoffical ConsiJrrntions

H^ci.n t.aCqU'S 0 kn0wled3e from human protocol presents psychological considerations in
designing the appropriate model for that information. Justific.ion of PLX as a production system on
such grounds can only be hypothesized by investigating other works whose primary task was the
actual use of such protocols.

25

 ■■-- - - •MMMM

M»M '•"fip^i!iwifpprawiiP!ippiwppwP!Pfi"WPiii*pjuy*nmi.^J^Kn^\^^Musm^mfmllmf^^■,• '*v*mi*K.IMIAffniwunuMwiwim,vjM'.f»9ui^Lai, ,UüJ«i,.11-..«i....I.I- , u»»# v: i.' J .»•*"!*m*fmiftii^i*m*m*Bif?mm

i

THE PRODUCTION LANGUAGE - PLX

 I" their study of human problem solving, Newell and Simon theorize that Ih. „.. ,
organ.zahon o. human programs closely resembles a production system organi^lion. As they 0^

In a production system, each production is independent of the others - a

ÄslÄ ^^.rpri^ ÄÜTo tTT'
^^Z-ZrrX^^^ .0 be

tWal or,ohl.C!!0.1l ",emSe"'eS SSe" ,0 ^e,J^eSt'", "ea™nS,ul components of the total problem solvmg process and not just odd fragments.(iii)

^frZ^T^mSZ^Tr:''":he .'orm °''produc,io"'"" ■"*""<■**' "^™"«
'V^canuseVÄ^r^^^^

='n^o;riror:rro; b^
derived by the subiect Th« 1^! > 1* e the acc'u,sltion of a "ew piece of Knowledge

5ySte.s re^anÄ 'i:z^^z^^rzz\'xr" "°d""L

a^=th.Ihs
e

tud?wDhth^«srVpSo^N
SvS

9
ti ^«T 711 ^^^721 among others, is

origmeifyhandcodedtotd oge ^"em, rerrtr Let f ^ heUriS"CS WhiCh Were
a production system as situatiorLrL« ,. cnemisIry exPerts. Later, these ideas were encoded within

flexibility Ba.rdtus^V^S^s ad:::^0:'" "^ ^ ^ ^ ** ^^ The

O^A. Newell and H.A. Simon. //„maH pro6/<,m Solvi^ New Jersey: prentice.Hal|i 1972> pg

(ii) Ibid,

(ill) Ibid.

26

- ■ --- - —■ ■-.■—..

•P*anmiPW>«a>VI^WWiPWl>"l>"i»piKI>l u-.i-.i. i i . .u I y »JIMI], U.™!. IJ^. V,IU)„I muiWJlM«" 11H,<1 "JJPl ■'! '. ""' IT 1 11.1 if Jlil,<liil. „I ■

;

i

it

■
THE PRODUCTION LANGUAGE - PLX

ayÄ! t^ tl,
he0ry',,hen' invol^s "ttle actual reprogramming. This allow.

LTrph ^^ brarr,ed 0Ut With different Versi0ns 0f the theory. a very useful
feature when dealmg with a subject as uncodified as mass spectrometry.(iv)

DENnRl,*^0™110 ^r0SraTminS P,0blem ,s similar t0 the Protocol analysis of PAS-II and the

i e X np ?^ Th^r e t f ^ 0r,S;nal ^ " StartS With and ,he ^* of ^ ^^d product,
n!lnr? ! ^^ 0f a pr0cess whose structure must thereby be inferred Bv dealL with

abovi :üo^i;n!i^i^r ^^^r;süa8e for diaio^e -de^Th- ^

Functionnl Comtidorni ion.«

fh« .Jnw6 pSychc;l0gical hypothesis of the last subsection was meant to give some intuitive basis for
the production language of XREP. The functional considerations have direct mpact on thi

a:: y" 'rar^errdo'^^^/r: "^^ By iSOlating a pVrrsegrnH i w "y ^ c
I P-^ty^pro^tion0::;;".^^to work-severai ^ *™ *™ —^ ^™* 'f ^

reorJenuL'^V0' ^flj ^ ^rru^ of heuristic£. Waterman used production rules for
from thr 8ft ' aim,n8 that thiS rePres8ntation technique "permits separation of the heunst cs

I" e e s?r:cr:;:t
aHs clear ffication of the individuai heuristics' ^^^

rules^nt;"?:e::breTo%na,y'is"5 ^ " "^ ^ ^ ^^ by ,he pr0duction

work ^l^f'" pSt!m Tenti0ened in the Previ0us subsection is the vehicle for Waterman's latest

rutoltfcÄhav^X0:' fy•"'n■,, : Wh;Ch Pr0dUCti0n langUage pr0gra- are mod ed
[WATERMAN 7/l 1«? £ y "^ B!nPra,e and mSert new Prod^tion rules as learning takes place
LWATERMAN 74]. Again, the nature of production s/stems aids his analysdS.

ArJifi^M^n^"3"' G-L; Suther,and' and E-A- Feigenbaum, "Rediscovering some Problems of

Me 1^ Jntn rh6 'Jp?.00"*^ 0f 0rganiC Chem,stry-" W«cW"« /m«WW« 5. Ed by B Meitzer and D. Michie (Ed-nburg: Edinburgh University Press), 1969, pg. 274.

^^irs^r'ra^tr^10^"^65 for Autom8tin8 the Learnin8 of Heuristics-M

27

^in^uvnHiBiiPpvwiMKiiiuiku.Ji! 1J.W1 in!,.-ijoiiii tmmm. T*\mmmimiMm*mimmfi^imMvmsimvm^mi^m^)m.».!«u^.i .1 m..iBiW"-LI'üK ! - u■-u-,«rnxmukm..Miß.mmtM.ümj.n[f\¥^mtnmm™mn%^^iM^mKi. 1 - ■ ''l-1-*•m' *'*'wmvfj&wmi 1,1 IM-.WJ.II ■ J m

THE PRODUCTION LANGUAGE - PLX

A different study used a production system to represent inference rules for natural language
relations [LINGARD 72]. Lingard ar.d Wilczynski used a Backus Normal Form (BNF) representation for
stating the infraction between relations. Thus a rule like "GF -> F F" could represent the fact that

f^M^r ilr (GF) iS the father {n 0f the fa,her- Their sys,em could acceP^ requests like
MnSrJ?! and deduCe lts truth by usin8 the grandfather rule, and the two assertions
(JOHN F FRED) and (FRED F JOE). By representing the relation interactions this way, a uniform
parsing algorithm could be used to carry out the analysis within an associative data base. In his
Ph.D. dissertation Lingard continues that investigation [LINGARD 75],

vDC
The inspectability and accessibility of production rules are the main issues of this discussion

fXREPs debugger is to function effectively, it must work on a representation that is responsive to
the requests which might be made of it. In Chapter 5, the scope of information needed by the
debugger will emphasize these points.

Other functional benefits of the production language will be discujsed later in Chapter 5 and
Section 3.5 when enough of XREP has been detailed to adequately state the claim. The rest of
the section is devoted to PLX, its environment, terminology, and primitives.

3.2 THE PROGRAMMING ENVIRONMENT FOR PLX

The production language character of PLX comes strictly from its contrjl flow behavior The
design of its other facilities was influenced more by the environment in which PLX was programmed
than by classical production language issues. To put the capabilities of PLX's primitives in the
proper perspective, that environment will be described first.

rpAi7rD
RE7P iS Written 'n INTERLISP ,lsing the data-base extensions of the API language

BALZER 74a]. API, a LISP-based pattern match-language of the PLANNER(vi) generation, is tailored
for the Automatic Programming projec' at the USC Information Sciences Institute. The properties and
pecuhanties of API will not be detailed here; only the facilities borrowed from it will be considered.

The data base is associative; information is stored as tuples whose first item is the relation
which associates the others, in either a positional or keyword manner. Any item of a tuple, including
the relation, can itself be a tuple. Neglecting the question of variables and literals for the moment,
all the following are legitimate entries:

(FATHER FRED BOB)

(BETWEEN BOTTLE (CHAIR TABLE))

(PARAMETER ROUTINE A B (C D))

((COMPOUND RELATION) X Y)

(KEYRELATION (KEYWÜRD1 X) ^KEYW0RD2 Y))

(KEYRELATION (KEYW0RD2 Y) (KEYW0RD1 X))

(vi) See [BOBROW 74] for a review of this generation of Al languages

28

 - ■■ ■ ■ - -

^W^^WfWWWPiripiP^lllBWP^^PPPIP^WIP »kj*W«M|l'™»»»WJ»WW»Pn«'WJIilll!!,ll*Ui|^WI^II»W-llll.>l|IM!.ll"ll.. i)

THE PRODUCTION LANGUAGE - PLX

The Isst two are equivalent examples of keyword tuples. The ambiguity of which type of relation is
which Umce they all look the same) is resolved by forcmg each relation to fall into disjoint classes,
either posit.onal, keyword, or function (described below). So, in the examples, if KEYRELATION is
declared keyword, the last two tuples are the same. If KEYRELATION is positional, then they are. of
course, different. / *, »>

Each tuple is assigned a unique name and stored in a named context given in its assertion
Ihese contexts can be hierarchically organized tor retrieval purposes and are under user control
I he contexts effectively segment the data base into isolated sections, while the context hierarchy
joins the sections as the user wishes.

Another important feature of API comes from allowing i:s predicates and patterns to consist
Of an arbitrary mix or LISP functions and API expressions. For example, FS* is an API function
whose form is

(FS* <variable> <pattern>)

This function matches the pattern, but returns the value of the variable mentioned.
FS* acts as a selector function based on the variable in the pattern. Thus

(FS* NUMBER (AGE NUMBER BOB))

In this sense.

says to find a NUMBER such that NUMBER is the AGE of B03. If the retrieval is successful, NUMBER
is bound to the desired value, which is then returned as the value of the FS* expression If the
retrieval fails, the returned value is NIL, the false atom of LISP.

Another possible expression is

(FS* NUMBER (AND [WIDTH NUMBER B0ARD][GT NUMBER 10]))

whose interpretation is to find a NUMBER larger than 10, which is also the WIDTH of a BOARD This
example shows a mixing of an API expression. (FS* . . .), two LISP predicates, (GT . . .) and (AND)
and an API tuple, (WIDTH . . .). This marriage permits a great deal of power and convenience by
allowing the user the expressiveness of both systems without restricting him to either

3.3 PKEUMIN/IKY TERMtNOIMY

The following terminology appears throughout the description of PLX. Though some of the
terms nave been used before in a loose manner, they will now be linked more closely to the
production language.

29

-; . ■ --■- -^—■■■.;■....---^ .

(mmWIiiVlll»" ■"■,.. I.- . li.,,,.,» ,,,,„,„,,,^,^1,,,,»JI,,,^,,,,,!,,,, ^,,„1411 i.|.llBj||ji)Wllll,lniIuil, Jl., L.I I41W1.,IU, U..»J^»^«llfllllU'lll'HBI«J«»l,».JIl'l»l<-»'"JH»i- -i- -^-l ■»»"(•■«»»•«llMWfmi™

THE PRODUCTION LANGUAGE - PLX

An event is either a simple or a compound event.

• A simple event is an atomic element to be used as a nonterminal.

• A com,,onnd event is either (1) a parenthesized expression whoje first element is a
system primitive or (2) an expression with events separated by "," or "->".

A node is either a simple event, a type 2 compound event, or the result of executing a
type 1 compound event. It has the following properties: (1) it can only have one
ances.or and (2) all generated offspring must be new nodes (henc* no loops)

A typed vnnMe is a type together with an identifying expressicn (separated from the
type by a ."). The expression can be either a generation number or a function which
points to a particular binding -- for example, PLAYER.l, and PLAYER.(INDEX MAX DIEVAL)

A aenerniion numhrr is an integer which identifies the relative position of a variable
type in a particular path from a point in the generation tree.

PI AVF^'iS P
f
LAYEfR"2(u

de!in!S ,the 5eCOnd Player mentioned from some point, while, by convention,
JllTu re t0 the laS, player inserted int0 the PEG' PLAYER.-2 to the next to last playe-, and so forth.

• An access path from an event in the tree is the
r.odes up to the root.

unique ancestor chain of events and

pnvirnll^I'r8 ^ f V^l "" referenCe durins its e*ec^°". the access path becomes the environment for any evaluation done by the event.

30

, _ ii iMBtilr ■ i ii l ■ ■ i iii
- "- ■ ^ - -- - - ■ ■ - ■ -- ■- -

putyiiui...i-.mm^mmmiu 11»,ü_)ii,ifiuw-■-^ i^wp^fiim-yKJHvw*»u?»f,piPI.1.WLIM.I,.!_.,-lüuriiJii^pBiWüJPi«*«.'^'-,.^-

THE PRODUCTION' LANGUAGE - PLX

3.4 PL\ PRIMITIVES

The current version of PLX has six primitives whose syntax and functional behavior will be
Riven here in an informal manner. The next section will give a formal description of each primitive
showing its effect on the PEG, while at the same time describing how the event separators cause the
primitives io interact.

The form of a production rule is:

<parprt-fJef-name> := <event> [{,!->} <event>]

In other words, a valid rule is one whose right-hand side is one or more events separated by "," or
"->". Besides simple events (i.e., nonterminals), an event can take on any of the following forms:

(GENMEM type API-predicate next-event)

(GENSEQ type API-predicate next-event)

(COND API-predicate)

(INSERT type.APl-expression)

(TERMINAL API-expression)

(FUNCTION API-expression)

The GENMEM event given by

(GENMEM type API-predicate next-event)

binds a local variable, making it the "generation" point for "next-event." The value of the variable is
chosen from the global data base by the API request

(LOCAL (ENTITY)
(MATCH (AND (AMO ENTITY type)

API-predicate)))

LOCAL is an API function which creates local variables -- in this case only ENTITY. MATCH is
another API function which tries to match the pattern given — in this case
(AND (AMO ENTITY type) API-predicate). The pattern's interpretation is to find an ENTITY such that
ENTITY is a member of (AMO) the set "type" while also satisfying the API-predicate. The presence
of the API-predicate, ignored in the example of Chapter 2, acts as a filter between the data br-se
and the potential values. So, for example, if the data base has the following assertions:

(AMO 1 DIEVAL)
(AMO 2 DIEVAL)
(AMO 3 DIEVAL)
v'AMO 4 DIEVAL)
(AMO 5 DIEVAL)
(AMO 6 DIEVAL)

31

■■ — - ■ ■ — — — ■■- — - '

wnmuii.iiwPMiMJiupp" "-—"

THE PRODUCTION LANGUAGE - PLX

then

will pick any of the DIEVALs, while

(GENMEM DIEVAL T (-> NEXT))

(GENMEM DIEVAL (EVENP ENTITY) (-> NEXT))

will consider only the values 2, A, and 6, since EVENP is a LISP predicate which tests for the
"evenness" of a number, in either case an appropriate DIEVAL is chosen and assigned to DIEVAL.l if
this is the first DIEVAL to be bound, DIEVAL.2 if this is the second, and so on. Execution of NEXT
follows this binding process.

The effect of the GENMEM statement Is to produce a variable which is local to the current
path of the program. In many production systems, all actions depend on a global data base; there is
no notion of local variables. In PLX, the typed variables, as generators for future events, act as
locals, a feature which gives XREP the capability to contend with questions about data structuring.

Once the binding takes place, "next-event" is executed. If some failure occurs later,
backtracking may return processing to the GENMEM for selection of a different value, making
GENMEM a "choice point" in the execution of a program.

The GENSEQ event given by

(GENSEQ type API-predicate next-event)

has the same action as a GENMEM event, except that all values of "type" which satisfy the
API-predicate are chosen, each of which is to be followed by "next-event." The effect is like having
n independent (i.e., no interaction) GENMEM events, where n is the number of values which pass the
API-predicate. The GENSEQ is not meant to model a loop, but instead models a structure of disjoint
actions which would otherwise be difficult to represent.

(COND APl-pred) is a predicate event which acts as a filter to the current production rule.
When a COND event is encountered, it is evaluated. If its result is NON-NIL, the processing proceeds
normally. If it results in NIL, then a FAILURE is detected and processing backs up to the last choice
point: a GENMEM or a rule choice (to be explained in page 43).

If COND is the first event on the right-hand side of a production, the effect is very close to
the situation-action pairs of the production systems found in DENDRAL and PAS-II, or the
pattern-invoked procedures of PLANNER. That is, a rule is chosen and acted upon if the situation
(COND) matches. The generality of API-predicates gives the COND event arbitrary testing power.

(INSERT type.exp) is an event used to "find" a specific typed variable bound in a preceding
event and to reinsert it into the local context. A GENSEQ or GENMEM must be an ancestor of the
INSERT and the search for "type.exp" must be successful. The expression "exo" is arbitrary and

32

.., _ -,^.. ,■ - -.^—■, ~

■^?p™^**» HI« ■ M' ijiu . II iw« ,LLijn«,i"i,^wnpiwwwBiPW

THE PRODUCTION LANGUAGE - PLX

n,U«Lhr,aVe a Valid in,erPretalion
) i-e-, it must point to a specific bound instance of "type." If no

PLAYER has been bound in either a GENSEQ or GENMEM, then

(INSERT PLAYER.<anything>)

is erroneous. The effect of the INSERT is to reinsert the typed variable into the PEG (without giving
it a new generation number) for future references.

(TERMINAL APl-exp), by evaluating APl-exp and "outputting" the result, acts as the program's
interface to the outside world. If XREP is in a monitor mode, then the collection of TERMINAL event
computations, in the order of their occurrence, must match the given intention string.

(FUNCTION APl-exp) evaluates APl-exp for its effect only. Since the control structure of PLX
includes automatic backtracking for certain failures, the effects of FUNCTION may need to be undone
However, due to the anticipated frequency of FUNCTION events, state saving prior to execution may
be impractical. The solution involves the use of API contexts and a policy decision. Each FUNCTION
statement is given a new API context, linked hierarchically to existing ones, in which to make any
new assertions that affect the state of the world. If this event is then to be eliminated by
backtracking, then XREP needs only to remove its context from the hierarchy to undo all its effects
As long as the event has not changed any globais, its removal will be clean.

.1.5 FORMAL DESCRIPTION OF PLX

A formal description of PLX will be given by first viewing abstract productions and the
evaluation environment created by the event separators, next reviewing the control flow of tho
production language, and then showing how each primitive maps into the PEG. When the semantics
of PLX are defined in terms of the PEG, the description of the language becomes operational, giving t
firm interpretation to any construct while also making any structural changes to the PEG during
debugging immediately relatable to the language. ng

/Ihstrnc.t Productions and Event Sapnrntors

The right-hand side of a production was shown to be a sequence of events with event
separators, either "," or "->", between each pair. The event separators affect the evaluation
environment of any event, a concept to be detailed in Chapter 4. Now they will be analyzed for
their impact on the PEG and Access Graph only.

Figures 8 and 9 show the simplest rules involving an event separator. In Figure 8 the ""
between B and C means that B is protected from C, reflected in the Access Graph by having B and C

33

■■■- — - - ■ '- — - —

r

mmm^~*~ 1 ■-"■-■■ »^w»««» • i i.i] i IIII^IWüSW^«! > ii.ni>iiiuimw.i»H.ni»iw«ll<i,i - . ■■I ' jiiuuiii-iiiiju .,i i.iiiim.im

THE PRODUCTION LANGUAGE - PLX

on separate branches from A, and in the PEG by making B a rectangular event(vii). The evaluation
environment for an event consists of the global data base plus all the information in its access path.
In the Access Graph an event's access path is obvious, consisting of all events "above" it. In the PEG
the access path is not so clear, since each right-hand side produces a single level under its father;
the structure explicit in the Access Grapn is implicit in the PEG. Chapter 4 will show how to derive
access paths from the PEG. For the purposes of this chapter, look at the Access Graph when this
information is necessary.

In Figure 9, B is viewable to C, because "->" separates the events. Thus C is under B in the
Access Graph, and B is oval in the PEG. This configuration means that C has access to everything
generated by B, a situation which is obscurea in the Access Graph, since it looks as if B has already
done its work by generaiing C. However, the PEG clarifies this misconception by showing that B can
still generate information, since it is currently an unopened leaf of the tree.

A

A
Access Graph

©

PEG

Figure 8. A :- B , C

Access Graph PEG

Figure 9. A :- 3 -> C

(vil) Since the rightmost event in the PEG has no "brother" successor, its shape is immaterial.

34

■ -- ' ■ - -■ ■-■ ■■

Pi I PUJ» JJIll mmmmmtmm^,. pWrl B. _ .III. ■ -™^ ml UlULtlLlll^UIIIUHl

THE PRODUCTION LANGUAGE - PLX

Fl8ures 10 through 13 show all the possible productions with three events in the right-hand

TH TU rnc' Ap'ain n0tiCe '" the PEG that 0ne Production rule results in one level under the
rather. The PEG construction for a production is trivial; write down all the events, if "," follows one
make it rectangular, otherwise make it oval (this accounts for the fact that the last event is always'
oval, since no event separator follows it). The construction of the Access Graph is not so obvious,
though still not difficult. The algorithm is as follows:

1. Write the first member of the right-hand side under
nonterminal.

the left-hand side

it ii
I f

2. For each successive (event-separator event) pair, if the event separator is
then write the event down as a new branch under its predecessor's father; if the
event separator is "->", then write the event under its predecessor.

For example, in Figure 12, B is written under A according to step 1. Next the pairs (-> C) and {, D)
are considered in order as stated in step 2. Since "->" precedes C, C is written under B. Then,
since "," precedes D, D is written as a new branch under the father (B) of its predecessor (C),
resulting in the desired tree.

A

/l\
B C D

Access Graph PEG

Figure 10. A := B , C , D

35

v^mmmamumiiäMmMaimmumi^ivmmtämmitmlimmimim - - ■ — ■

M»»"W^W»PW»W«W»IH^^ mr-n-i'mtrnwrn^mnimirmrmimmmmmilfli

THE PRODUCTION LANGUAGE - PLX

A

I

I
Access Graph PEG

Figure 11. A :- B -> C -> D

A

I
B

A
C D

36

Access Graph PEG

Figure 12. A :- B -> C , D

■ ■- - - _ ^—^.. —*&

1 ' i i—»"^^^P^^^WiW^BBWWPWlW^^W -"•'• i nt i IIII»IWI Hi ai i iMuiiiMmtpawnvm^w

THE PRODUCTION LANGUAGE - PLX

A

A
B C

Access Graph PEG

Figure 13. A := B , C -> D

^ J?8^65 '1IC,ure ,w0 Access Graphs stil1 ^accounted for. Conceptually, they can be
thought of as representing the production rules given in their associated figure. However no
configuration of the PEG can account tor the parenthesized expressions (B -> C) or (3 , C) called a
type 2 compound event in Section 3.3. while still maintaining the conventions that each production
adds just one level to the PEG. The problem is fortunately not important and is circumvented by
forcing rules like '

to be rewritten as the pai

A := (B -> C) , D

A :■ temp , D

temp := B -> C

This transformation has no substantive effect other than to add an extra nonterminal in the Access
Graph and mtroauce another level in the PEG. For this reason type 2 compound events will not be
considered further.

37

ii mi«! irn' ̂ -^■i

ThE PROÜUCTION LANGUAGE - PLX

A

A
B C

D

Figure 14 A :- (B , C) -> D

A

A
B D

Figure 15. A :=» (B -> C), D

38

■fflf imiMirMiiiiiii ■iir- ■---.^l-J.-—.,.^—■.A^„--,..^. —^..■.„....u.-. ..„. t. . : .,■...-.^^,^._.._ _ , .-J-^.--^-.>.J-^.^...-^:- ^ .^ ..,__.■. ..—..^,—^L^.-L^ -^^ ,.■■._ ■^...,._

F"—^ I . Uill"ip?wi^WPi^flWP^««".'^li««WSipiWi?rfl^«P^!PpB!W*F ' - . I -: i ijnppipiRlip^P^'I^BBB!»

THE PRODUCTION LANGUAGE - PLX

GENMEM

1

type.n val.

next-event

{ GENMEM j

Q type.n val

(next-event)

Access Graph PEG

Figure 16. Graph structure of a GENMEM event

39

ff-"1 ' ■" ,l1 - - " ILII "-'■-"^" '" ^ i ...I.,.. <^.ii»t«»....|itiiiii|ii)i|i.j|.iJiif.ti...i.u».i-iit.mi..J|iMlii.iii».„J...u,M ■JUUHM.WX.. , J1.1 ,.j;i|Ulj|l III,., Ht.' y.l»J.MiiJ»<MiT-».»«WI . 11-111)1^ I -I IBMHWIIIJHWI -. |l||l| .l[|l.llj|

THE PRODUCTION LANGUAGE - PLX

PEC Mapping of Pl.X's Primitives

The GENMEM event given by

(GüNMEM type APl-pred next-event)

produces the structure shown in Figure 16. The generation number n assumes that n-1 occurrences
of "type" exists in the access path of this GENMEM. A member of the set "type," "vali" satisfies the
APl-pred. if no type is found, then this event fails, leading to backtrack. If a GENMEM is backed on
to, a new value of "type" is picked.

The GENSEQ event is given by

(GENSEQ type APl-pred next-event)

results in the structure of Figure 17. The generation numbers start at n, as in the GENMEM event,
and end at n+m-1, where m is the number of the vali which satisfy the APl-pred. The bindings are
rectangular, since each branch is to be independent of one another — a situation visually apparent
in the Access Graph.

The INSERT primitive given by

(INSERT type.APl-exp)

has the simple structure of Figure 18. The form "type.number-value" reflects the generation
number and the value of the found "type." If type.APl-exp does not point to a unique binding, this
statement fails and backup takes place.

The TERMINAL primitive given by

(TERMINAL APl-exp)

is seen in Figure 19. The "result" of evaluating APl-exp is inserted into the PEG for future
reference.

The other two primitives, FUNCTION and COND, add nothing to the PEG other than their mme,
since they exist for their immediate effect only.

HO

 .,.,.,,..■—.. - —^

,y.,11„ii it .upiiipiuvvpi. ji i«iwiiJiM,^*.«pi^ «.wmwmwm-'W'f ■wwiMfinji ■ '.«^^^m^niHVI,JMi,iwu.mnL!Vni..UllUi>||ilili)ujßiigmpmmm^. - . ' i . ,il|UWP!**Wl

THE PRODUCTION LANGUAGE - PLX

tl- PEG. canerihl'crRVNTrrrr'-n^05";^^ r0CUSeS 0n the ,,,ef,m0st" un0Pened ™* "
not yet been e ' ^^0 3 P1 f, ■tUn0Pe;e' :,eanS ^ the ^^ is a nonterminal wh.ch has
vDrD

y!L° exPandec< 0 a PLX primitive which has not been executed. In the nnnt^inai ™ n executed. In the nonterminal case,

a) If CURRENT-EVENT has a downward pointer, take it and go to step b. Otherwise
go 10 step c.

b) If the event is unopened, make it the CURRENT-EVENT. Otherwise go to step a.

0 It the event has a right pointer, take it and go to step b. Otherwise go to step d

d> If to SepT^ POinter (WhiCh mUSt e)<ISt 0r Step C WOuld n0t have failed) and

fhe PEG Je
Ur^XT V 'r^^ tree SearCh f0r the first unoPened —»• Step a moves down

now b^Vted (the So?;6 CtePS C Td ' m0Ve UP and t0 the r^- The BACKGAMMON program w^N now be traced (the program is repeated for convenience with syntactic updates).

BACKGAMMON :- START , REST-OF-GAM^

ll^L := (GENSCQ PLAYER T ("> KOLLDW) -> COMPARE
ROLLDIE :» (GENMEM DILVAL T)

COMPARE := (INSERT PLAYER.dNDEX MAX DIEVAL» -> FIRST-MOVE
FIRST-MOVE :- (TERMINAL PLAYER.-l 'MOVES')
REST-OF-GAME :- . . .

Figure 3. Rules for beginning of Backgammon

The program starts with BACKGAMMON as the CURRENT-EVENT.

nonterminaiThe ^s^^ " ' n0n,ermina1, * ^ ,S Ch0Sen and attached ,0 the PEG- *>r this

BACKGAMMON •= START , REST-OF-GAME

^rodSctJT5 '" Cürren' PEG- NOiiCe ,hat START IS iectansular due t0 the "" which follows it in

43

__.,_^^^-"- ^.-^—^-^■J.^- ittmmmammmmtmimmtmmmmtammw^mmm

lliinmiliii Minim in iiiiniimniiiii im ■! n i MIIIH MI immm t II HI iwii mi in« imn jin 11 iuppii '''9

THE PRODUCTION LANGUAGE - PLX

rule

Figure 20. PEG after step 1

Application of SUPER-NEXT to BACKGAMMON makes START the next CURRENT-EVENT.

2. Since START is a nonterminal, a rule is chosen for it and attached as in step 1 above. The

START ;- (GENSEQ PLAYER T (-> ROLLDIE)) -> COMPARE

results in Figure 21 with control passing to GENSEQ.

COMPARE J

44

Figure 21. PEG after step 2

 -- - „„.^^^.»M^MtH—M»»^^,^—

i miui|H,iinn WMUimi 1.1 WM

THE PRODUCTION LANGUAGE - PLX

type. Control now p^e. to ROLL« unciel PLAYER! ^""^ '** * ^ '"" '"*'•** "' ,h,S

c BACKGAMMON

G S TART

C GENSEQ

I PLAYER.!-*-JQE

■

c ROLLDIE

COMPARE 3

PLAYER.2-^JOHN

J c ROLLDIE
)

Figure 22. PEG after step 3

DIEVAU l^cf tNs'GENMFMt' Pr0dü"eS I'6 GE'MEM eVent' Which reSults in ^ in a binding for

45

 - - ■

- — ^ _^

■

II UiMil.lHPimnBHPPnfVÜ?^ :«P»*IIVWII4PÄU' I -. J' i-, ■«!. ■. '.*■} !■»" ^PMHIN.I I I . il!Jp«i.J.iJW.llA«M J.^f f W>iHl] ^W- '• "«■»^l^HJTMJ ■wjHMPi-'iPf-P" ■ T- ■ —"--"(«••.Uü^pi.i W».WIIJ wu^t^iim« jy^

THE PRODUCTION LANGUAGE - PLX

QBACKGAMMON

L PLAYER.!-^ JOE PLAYER. 2-^ JOHN]

Q ROLLDIE ^ C ROLLDIE
)

Q GENMEM J r GENMEM 3

CDIEVAL.1^3^ (^DiEVAL.l^Q

Figure 23. PEG after step 4

5. Control passes to COMPARE which causes the production

COMPARE :- (INSERT PLAYER.ONDEX MAX DIEVAL)) -> FIRST-MOVE

6. When control passes to FIRST-MOVE,

46

 - ■■ ■ ■

"•P" mmmmmmmmmmmm^^mm iiHiiuiiii im uanvw^miwiui > > itwmm^^m^^mru^m

THE PRODUCTION LANGUAGE - PLX

FIRST-MOVE := (TERMINAL PLAYER-1 'MOVES')

is chosen, passed to, and executed. Since INSERT is in FIRbT-MOVE's access path, PLAYER.-l (the
last player mentioned) evaluates to JOE, producing the string "JOE MOVES" as the result of the
TERMINAL event. Figure 25, now the same as the PEG given in Figure 5, shows the result of this
action.

7. The program continues by moving to REST-OF-GAME, where some action presumably takes
place, and concludes when the original 3ACKGAMM0N event is crossed, leaving no unopened nodes.

PLAYER. 1^-JOE m PLAYER.2^-JOHN | (INSERT ^^^FIRST-MOvT)

Q ROLLDIE J (^ROLLDIE) (pLAYER.l = JQE)

c GENMEM

C

; C

DIEVAL

GENMEM

^7) C

J

DIEVAL ^D
Figure 24. PEG after step 5

47

 -- ■-■ ■ —- - — - - . . . -.

■~~immmmm "i"""'''—»"—""—- Hi i. «I. UUAi'HWPWBiPlimBWBSWnpw»»"""«« - uiiU'.l.J 1,1. , .1 uuiu I I ■— IPIBBI —

THE PRODUCTION LANGUAGE - PLX

PLAYER. W-JOE [«, PLAYER.2^-JOHN| (^ INSERT }*^FIRST-MOVE^)

C ROLLDIE

C

J C ROUDIE) (^PLAYER.l = JQt) (TERMINAL.)

GENMEM } C GENMEM 3 C "JOE MOVES"
)

(^DIEVAL.W-3") (TJEVÄLJ^T)

Figure 25. PEG after step 6

3.6 SUMMARY

Using graphs or trees as a medium for describing various properties of programming
anguages has been common in computer science research. For example, the Vienna Definition

Language tries to formalize a method for stating a programming language's semantics by formulating
an execution tree and providing primitives for manipulating that tree [WEGNER 72] Each language
construct is then defined in terms of these primitives and how they affect the execution tree, so that
any implementation of the language will have a precise foundation. The tree is their mechanism for
coordinating the entire formalism. Similarly, the PEG, by being the structure which defines a
process, is the coordinating formalism within XREP.

48

P^l» ■IViif!WPi5!P">WW!l»f3iP'?*™.W!'.J«.I«,!."iil'..,i. , UL,.i^i'ii H«WiiP!i|JIWWiipiW*PWPIi^!4!Wfl.ap4! «V^..>*•••«<■ tw. W-HI^K.I.H. ,=^

■ 1
THE PRODUCTION LANGUAGE - PLX

In this chapter the production language was described by picturing each construct in terms of
the PEG; the next chapter will study variables and access issues from the same viewpoint.

49

L ■tan - -• ^ „.. J—, , - .■^.■■J.-..„.. ._.- ^

I" «!■'■ I ■ i I ^^^^r^n^t^mrmmfmmmmtm w • •

ACCESS PATH THEORY

etc''Info's" 'ca^rlhrr'Tr "^ ' ""^ aSG0Ciated With the °b>^ J°h". Chicago. USC
redundant and se f by ol a a^:::!' fT ^f6* ™dif- * cons,dered nonrestric^e o
clause (now called resfr c ,7 n^^^^ lf necessa^ to ,he identification, the
For example, in the statement "USC whLh n t o ^l "^ PhraSe) ,S n0t enc,osed '" commas,

won the Rose Bowl n 975" is noSe^t ic ivT Hn! ^ " 1975, 'S Pr'Vate•,, the clau5e ,,wh'ch

won the Rose Bowl in 1975 is or vate •• It ^ ^ ^^ beCOrnes "the scho01 ^^ich
restrictive. Since most mandate ob ec'-d TZ * ^"^ t0 iden,,fy the SUbJect' he™»
retrieval mechan.sm and ' he net, h^Lh XPEP Pr0Per ^T'^ reStriCtiVe C,aUSe is a mai0r

be shown to be . specia, cj^^^Z^r ' ^^ ^^ ^ ^

fiexibiiS6 ^^; t^:j^:e^:s:ns"sn are iot ea5iiy c,assmed- ^ * ^—and

1. The last player.

2. The first player.

3. The player who rolled a 5.

4. John's die value.

5. The player who rolled a die.

6. The die value rolled by the last player.

7. The last player before John.

8. The player who rolled the largest value.

l^ylT:::^:: :rr::sr zt in
bf

urs where a ^*r *-• - **
because a reference to "t e player" would ba IhM ' PrediCate' firS, 0r ,ast- IS need^
seems to be useful only , ,dent fymp end oomts of ' t '' * T*"' ^^ 0f this Predlca,e

"the next to last." or "L third" a^nn^ 1 ? VPe s members. References like "the second."

possibility for eror is greater fo both ZT' ^?* "^ 0r "f0Urth fr0m las," are- sin^ ^e
presented an unnumbered st to mt a„W ! Z* *"* ^^ 0f ,he Mor^^' " someone had
would ask for conTmaHon o h. ? and a

f
sked for a COmme^ on the sixth item. I suspect that I

-P.-co^putÄf^ —ge does not'often use

associa^d^^oblecrSlsV^ t ^ ^ ^ 0bjeCt by ^ ^ ^^t.on
the search, is restrictedby hav nf 5\Vh d,e v'lu if s

yPe- 1
ln
|
the f0rr a P,ayer' the ob^ct of

information would be necessary SeVeral playerS had the same number, more

notio tÄ ^ialt^tX^^l/'6 f ^IUe iS ^ 0bjeCt 0f ^^^ ^ botb "ses. Piict imkage is g.ven to help make the proper association. In other words, John's

51

™WW,"^"!<W»I^«"-"™~""I«<>"™W»W™-«*!W~II«1PS«PBS»I^^

ACCESS PATH THEORY

age could be requested in a context-free manner because all humans have an age, but not all humans
have d.e values. The v^dity of "the last player's die value" depends on the invironment ofthe

3c t rule WEpTär n* ^l ^11 be baSed 0n SOme pr0ximity measure rather than some
explicit rule. XREP s PEG allows exactly these kinds of associations to be made.

The alayer in example 5 is identified by association with an event as opposed to an object --
rnnnto t ^'y diffe^nt fr0m any of the precedmg However(notice ^ ^ f. ^ '

counterpart in traditional programming languages.

th« fnr^-lr f T.7 ty,Pif^ ,he relallVe typeS 0f addresses which replace the numeric kind. In
he ormer the last die value m.ght have sufficed, but its form emphasizes the player involved In
he latter counting war. presumably not feasible, so a new context, John, is named and objects are

nlZllt T T "^ 0Cal POint- ThiS me,h0d ,S 0ne 0f a class of nami"g mechanisms which is
more e.aborate and more context-dependent than those found in computer languages.

The last example is the most difficult because of the generality of the reference. It says to
select a player based on the result of some function appl.ed to an object associated with players
Many assumptions must be satisfied before such a request can be fulfilled: what is done if a player
has no die value, what if a player has two die values, what if the result is not unique? Again, this
reques ,s mghly dependent on the context of the inqu.ry; each anomalous case must be treated
separately.

The examples given cannot possibly be exhaustive, but are intended to represent typical

Si«8«^ 'T ^ n?tUral lan8Uage- EaCh CaSe Wil1 have an '"^Pretation in XREP within the facilities of the production language.

4.3 ACCESSING TYPED V/]RI,WLKS IN XREP

Generation Numbers

A typed variable is created in XREP through a GENMEM or GENSEQ event. The value of the
variable is assigned to the form

type.n+l

where n is the current generation number for this type in the event's access path. The generation
number, defined in Section 3.3 as an integer which identifies the relative position of a variable
serves more as a convenience for the discussions than as a fundamental tool of the formalism
because high generation numbers are not often used. As mentioned in the previous section.
accesses to a set of types probably use numeric expressions only at the end points - for example

52

ii i ii % i --■- , , ii

^^^mp^^MT ^nvjpnpww KV i >■ >mwmw*^"

ACCESS PATH THEORY

PLAYER.l. PLAYER.2. PLAYER.-I. PLAYER.-2 -- while accesses to the middle of such a group most
probably name an intermediate target and then give relative specifications.

The scheme for assigning generat.on numbers is simple: for GENMEM the current number is
incremented for a type; for a GENSEQ the numbers are mcreiriented across the driving type. The
assignment in a GENSZQ comes mere from intuition and convenience than from a strong logical basis,
since each of the elements could be assigned the same number. Figure 26 shows the GENSEQ from
the BACKGAMMON game. On the left is the actual structure; the PLAYERS are numbered 1 and 2
(according to the GENSEQ rule) while each DIEVAL for the GENMEM is assigned 1, since each is the
only DIEVAL in its own access path. The structure on the right of Figure 26 is also possible, since
each PLAYER is likewise the only one in each corresponding access path.

GENSEQ GENSEQ

PLAYER.l —JQE PLAYER.2—JOHN PLAYER.l—JOE PLAYER. 1—JOHN

I i 1
GENMEM GENMEM

I I
ROLLDIE ROLLDIE

GENMEM

ROLLDIE

GENMEM

ROLLDIE

DIEVAL.1 — 3 DIEVAL.1 — 1 DIEVAL.1 — 3 DIEVAL.1—1

Actual Access Graph Possible Access Graph

Figure 25. Generation number example

A mere ambiguous situation occurs in the Access Graph skeleton shown in Figure 27. What
should the last DIEVAL be numbered' A case could be made for 2, 3, or 4. A more complex
numbering scheme involving extra indexing is also possible, but since this situation is rare and since
XREP has many ways to access all the typed variables unambiguously without relying on the
particular numbering schema chosen, this problem is one more of implementation than of substance.
As a result this and similar anomalous situations will be downplayed; the emphasis will be placed on
the addressing methods.

53

ui__^aMaaM am^^^^mmm^^^^amm

iniiiiwmipumwuiu ■Hui« uMi. i ii.iiii^i^wqmmitnwtiviiinpaiii" .^JlilllMIRIIipPllB^rBPWJiWBJklllB^illlllH^ll^l^MMIMillByjI.lUL.I ■! Ill Ml l^fip

ACCESS PATH THEORY

DIEVAL.l

GENSEQ

PLAYER. 1 PLAYER. 2

DIEVAL.2

t
DIEVAL.?

DIEVAL.2

Figure 27. An anomalous generation number situation

i.i RKI.nTIVE ADhRESSING

One of the claims made earlier in this report was that the language and the PEG
promoted a notion of spatiality for data items. That is, rather than merely a value, a variable also
has a referenceable location within the evaluation environment. To take advantage of this extension
ways exist within the language of access data in a spatial manner.

The basic method is to refer to the variable type, together with an identifying expression as
follows:

type.expression

The expression may be anything that evaluates to an integer (other than zero), or it may be a
functional form, INDEX or FIND.

INDEX will be described in the next subsection as a function which inspects GENSEQ structures.
FIND is a function which specifies a search for a type whose position is unknown. Its form is

54

- - i iniM HI ii ii i i ■ - *"•"'

"■»-■IT »--'-■• Tl™ iiwmi»* -I't"*-*}

type.(FIND APl-expres;ion)

For example, if a DIEVAL less than 5 is desired, the request is

-DIEVAUFIND (LT DIEVAL 5»

Other examples will be given later.

ACCESS PATH THEORY

For the case in which "expression" of Type.expression" evaluates to an integer, the
addressing interpretation depends on its value, if it is positive, that precise typed vanable is looked
or in the appropriate context path. This is a standard access, no different from traditional systems

D.'/wrrTT^f' ,hen a 'Slat,Ve ;,CCeSS iS def,neü ,r0rn the P0,nt of ;hls reference. For example, if
H uS r^ues'- !he ^lue returned is the first PLAYER found in the search up the context

path, i.e., the last PLAYLR generated or inserted into the PEG. Similarly, PLAYER.-2 would refer to
the second PLAYER in the search up the tree (the next-to-last player generated or inserted)

References of the latter type ■g.ye the system its heterarchical flavor; different processes
communicate in a nonhierarchical manner. Information is produced by a process and exposed to
whoever has rights to it. A hierarchy is imposed only implicitly by the structure of the PEG in

dealing with the scope of typed variables. This situation will allow us to reorganize programs with
certain faulty retrieval attempts.

The negative generation number specifies an access relative to a reference point. Another
Kind is possible where the desired data is referenced relative to other data. Its form is

«
type.exp FROM spec {FROM spec}

con.!!16'uWOrd«' a »al'd reference 's a {l'pe.exp followed by any number of "spec" separated by
|-KUM, where spec is either an event name or another type.exp. The list associates to the rieht
Thus e

DIEVAL. 1 FROM PLAYER.-2 FROM ROLLDIE

is equivalent conceptually to

(DIEVAL. 1 FROM (PLAYER.-2 FROM ROLLDIE))

though no parentheses are allowed, since any other structuring will not make sense. If a nonunique
event is named in the acces-., the one "nearest" the current reference point is used.

When a typed variable which precedes a FROM has a positive generation number, it is located

UWO llon^nnVf"? ^ "^ * ^ ^'^ referenCe p0int' ln ,he above ex^Ple. on«
nrrwA. 0 0iLDlc "** ^ l0Ca,ed' DIEVAL1 specifies a downward search for the first
DIEVAL encountered, not something named DIEVAL.l. Notice that if a GENSEQ structure (or any
compound event) is passed in the "upward" search for PLAYER.-2 FROM ROLLDIE, the following
downward search for DIEVAL.l may be ambiguous, since each branch of the GENSEQ may contain a
UltVAL. The ambiguity of the situation, explicit and graphic, is easy to relate back to the user as an
error.

55

- - -- ■ - -

-WB PW^PflpWWJ'VIP "um ' .ijn"ii.}i}iw^*mmmm^mmm^^r^*mm im *>«•• IWBWPWSWPPW^W" I-.IWWIWWIWM"' ■ ■ 1HMl im.IHJ U, '

ACCESS PATH THEORY

To further emphasize how the FROM reference works, some hypothetical requests will be
evaluated in the context of the Access Graph skeleton shown in Figure 28. Each reference will be
given followed by an interpretation of its evaluation. Three items should first be reiterated-
negative generation numbers are references up the Access Graph, positive generation numbers are
re erences down the Acce« Graph, and no access strays out of the context path of the original
reference point. The examples follow.

56

1. DIEVAL.l

2. DIEVAL.2

3. MEMBER. 1

EVENTX

I
PLAYER. 1

4. PLAYER. 1

5.

EVENTY

I
DIEVAL.2

MEMBER.!

PLAYER.2

6.

7.

8.

9.

10.

PLAYER.2

I
MEMBER.!

I
EVENTX

\

PLAYER.3

I
EVENT

Figure 28. An Access Graph skeleton

DIEVAL.2

— - - ■ — ■ ■ -■--■■ ■ - ■

ma PUBHI .U-r^r^V^-— ^I-7T»TT-I~S»W.-» »».IHtff^LWJ. -H.Mi-*'.' •^^IPPWIWPPPPBP

ACCESS PATH THEORY

Reference point: EVENT
Access request: PLAYER.-2 FROM MEMBER.-l

This reference is solved by locating MEMBER.-l, then finding PLAYER.-2 relative to it. MEMBER.-l is
found by looking up from EVENT for the nearest MEMBER, which happens to be MEMBER. 1 of line 7.
Using it as the new reference point, the new target, PLAYER.-2, evaluates to the PLAYER.l of line 3.
Note that if the request had been for PLAYER.-2 from EVENT, the result would have been PLAYER.2
in line 6.

Reference point: EVENT
Access request: DIEVAL.i FRQM PLAYER.-2 FROM MEMBER.-l

This request is initially the same as the one above, with PLAYER.-2 from MEMBER.-l pointing us to
PLAYER.l on line 3. DIEVAL.I from it means to now search down the access path for the first DIEVAL
found, in this instance to DIEVAL..2 of line 5. Notice that the context path of the original reference
point is not left, hence there is no ambiguity about downward searches.

Earlier it was mentioned that this string of FROM references associates from the right. It is
easy to see why, if you try to evaluate the above request from left to right.

Reference point: EVENT
Access request: PLAYER.l FROM EVENTX

In this request EVENTX in line 3 is located (not the one in line 2), with PLAYER.l from it resultinp in
the PLAYER.3 of line 9.

Within this framework the example English references given in Section 4.2 can now be
translated.

1. The last player.
PLAYER.-1

2. The first player.
PLAYER.l

3. The player who rolled a 5.
PLAYER-1 FROM DIEVAL.(FIND (EQ DIEVAL 5))

4. John's die value.
DIEVAL.I FROM PLAYER.(FIND (EQ PLAYER JOHN))

5. The player who rolled a die.
PLAYER.-1 FROM ROLLDIE

6. The die value rolled by the last player.
DIEVAL.I FROM PLAYER.-l

7. The last plsyer before John.
PLAYER.-l FROM PLAYER.(FIND (EQ PLAYER JOHN))

57

 , ...^..^ ^atitämat^^imtm^itä^luutt.

• ■!« B|lfSi^P!r"WllWPW"»IWW«"l-l.«illWWPWWW«pi4,1 I1!I1.,INI1JHWJBWW»I|^«-W«UI" "■»^^^■ll -UUJI H U W."" ' • J«ll.lIWlJB«ill«JM>^I^J^m|

ACCESS PATH THEORY

The reference to "the player with the largest die value" will be examined in the next subsection.

/iddressing a CENSKQ

Thus far all the access questions have ignorea the GENSEQ node. Since it represents a
structure of independent events, come mechanism must acknowledge the coherent character of the
node. Basically, the GENSEQ can be thought of as being a set of contexts or symbol tables which
contain data. Thus a request from outside the GENSEQ (but in the same access path) may wish to
get a "pointer" to a branch (context) of the node in order to do some calculation. The INDEX function
accomplishes this task.

The call to INDEX is •

maintype.(INDEX function subtype subtype-depth)

where "maintype" is the generator type of some GENSEQ, "function" is used to select a member of
the set "subtype," "subtype" is some type which appears in each branch of the GENSEQ in question,
and "subtype-depth" gives the relative position of "subtype" to "maintype." The "subtype-depth"
defaults to one if it is not specified. If gives, as mentioned above, a relative position. For example, if
it is 2, the located subtype satisfies

subtype.2 FROM maintype

for each GENSEQ branch.

In the BACKGAMMON program, the COMPARE rule was

COMPARE :- (INSERT PLAYER.dNDEX MAX DIEVAL)) -> FIRST-MOVE

The "maintype" is PLAYER, the "function" is MAX, the "subtype" is DIEVAL, and "subtype-depth- is 1
since it was not specified. Notice that if each player rolled two die and the compa. -.on was to ^ake
place on the second roll, the call would be

PLAYER.dNDEX MAX DIEVAL 2)

In the COMPARE rule the segment PLAYER.dNDEX MAX DIEVAL) tries to get a pointer into the GENSEQ
node to the player with the largest die value. The result of this access must be unique; otherwise a
failure which leads to backup occurs. Most often INDEX will be used in conjunction with INSERT in
order to provide a context-maintaining pointer for future references. The reinsertion of the found
type in the PEG is implemented as an indirect pointer back to the original binding. So once INSLRT
has done its work, a reference like

DIEVAL.l FROM PLAYER.-l

will result in the largest DIEVAL (just found by the INDEX function).

58

 "• mmirm^mp. mmn* •*—*^*^mmm^^mmm

ACCESS PATH THEORY

The goal of the INDEX function is straightforward, but the complexity of its parameters is not
The decision to make it work on a "subtype" via one "function" is arbitrary but not restrictive due to
the arbitrary power which can be programmed into "function." In any tase the situation is not
critical, since perspicuity (not to be underrated) and not capability is at stake.

A different design problem can be captured by viewing Figure 29. What should the result of a
DIEVAL-2 reference from EVENT be? This situation is so obscure that the time spent on it may not
be worthwhile; a case could be made for any of the first three. Most likely this particular graph will
never exist, and if it does a more specific access would probably be made. In Section 4.6 a
precise formulation of access paths will be given; this question will be answered then.

DIEVAL.l

GENSEQ

DIEVAL.4

EVENT

Figure 29. An Access Graph skeleton

4.5 THE /ICCKSS P/ITII PKOHI.EM

A study of algorithms meant for humans (rules for games, directions for product use, etc.)
reveals that information tends to come in functional packets without regard for any structuring
issues. In trying to code such specifications for a computer, programmers often produce a product
which reflecting diffuse structure, global variables, uncontrolled transfers, all items which Dijkstra

59

i

■ - - - -- ■ - -

■a^ppwwwww^i^^w^i'^^w^^^^^tm^immmmmmnmmmmimfmm^iiw9M,u. nmmmrm—-—■■— mm ■•—i '—<——.—w^—--™—„—, .,,, 'ii"iiwmmi!mKimfmflltK

ACCESS PATH THEORY

deals with in his structured programming theory [DIJKSTRA 72]. His ideas present a unifying goal to
programmmg. but are not at all natural for humans, programmers included. Yet human specifications

tninZ* ^ Ure' t
t
h0^.h/

much
t

of i* is ^Plicit. The use of anaphoric and relative references,
e lipses, and sequential information provide clues that human dialogue and descriptions contain
structure, though perhaps not as formally as one of Dijkstra's structured programs.

ma,nta
C0^,de

t
r ,hf Aut0'"atic

t
Prog^mmmg task. Assuming that one of its goals is to find and

th« rlcl. .^ M ??* m the natUral langUa8e Input' the access Path Problem ^ to organize
he fragmented problem statement so that during execution every process has access only to

relevant information while maintammg the appropriate sequence of actions. Given that goal, some
general issues can be discussed.

Iletornrrhy versus llirrarrlty

Automatic Programming has found its way into the realm of Artificial Intelligence because of its

f^nd^n'^ f V'M Tn0'^30^- ^ brmSS ^ ' ^ ^ ^'^^ ^ de^ ^ ^^V found in Artif.c.cil Intelligence, heuristics, search, representation, etc. Program organization as a
representation problem, is one of these concerns. ganizanon, as a

A strict, pure hierarchy which defines a structured program may not be realistic or even
desirable as a target for preliminary programs generated by Automatic Programming due to the
^"hierarchical nature of the human input. The heterarchical ideas, mentioned in Section 2.3, offers
the flexibility necessary in the initial translation attempt. In this framework control is diffuse
processes are activated in a goal-oriented manner based on the state of the computation, while its'
aata exists and is found as needed.

CASAP [BALZER 73] tests these system ideas in a simple card playing environment. Its basic
feature comes from the interface between a routine and the data base. In CASAP a process

the^d^baT 0rmati0n, Wlth the interface tryinS to fmd '*'th^ centralizing the knowledge about

ha^ ^l^ that rUCh flexibili,y iS needed 'S 0pen t0 *uecJi0"- XREP tak^ a middle position
between the two extremes of hetc-rarchy and hierarchy by offering a nonprocedural control flow,
yet addressing aata access and scope issues.

Nonprocedural Control Flow in XKKP

h, t J^ COntJ'01 M0W in XREP iS determined by the Production system character of PLX, organized
but no procedura y oriented. The segmented nature of production rules are like procedure or
subroutine calls bu without a formal parameter-passing mechanism. This model has two purposes:
to provide a control which can be easily monitored and understood and at the same time to allow the

60

-^^^■^^^^^-^^^-'^^'^ -> - ~— -„■.^-

CTPHMHI BiitjUM. immi^^ippiiiipni ^pp^wiwaqHiWii!u^m«mv

■ ■■.-. tL'.'i--

^^»r0 fle><ibility Sained by 8IVin8 UP formal Parameters come at the expense of requiring all data to be global.

ACCESS PATH THEORY

These qualities do not, however,

/iccftsx and Scope of Date

evaluattn^oZnltp^ JA l
|
,
rk

,nt,0 ,he PEt\ f^M, GENSEQ, and INSERT create an

«pabillly. lns,ead,eLr;11* S L;* '^l^'^r ^'T T? ^ '^

Dvtcrmimng Arcass Path*

i.6 COMPUTING ACCESS P/ITIIS

empha ze thet d Tenc AnodT^'^ and n0deS ^ ^^ '" 0rd- »o
inte%retation '^ nXating a^ a T.T"' ""^ haS a Simple

when viewing the Access Graph. G '^ 0nly a Sl,Bhtly m0re COmP"cated one

events^r^bo'ed inTot^H ^Ure ?0 f^* same « ^at of Figure 4 except that the compound ~=-"ä rent z^z'z Äi-
COMPARE, GENSEQ-NODE, START, BACKGAMMON

(i) See [WULF 73] for a discussion of this topic.

61

• UM

vi!*smi^fi^m9mte<i^™m****^* ?5!7?,WSf!in^rin?'WP«W!WPi^W*P?«?^»SI^^

ACCESS PATH THEORY

while the path for the second GEMMEM is

ROLLDIE, PLAYER.2<-J0H,N, GENSEQ, START, BACKGAMMON

Treated in this node format there is no arr,b,gu,ty in calculating access paths because every event
has a umque ancestor; the "joins" in the Access Graph occur only within nodes, which are masked
when viewed from outside the node. masKea

BACKGAMMON

START REST-OF-GAME

FIRST-MOVE

Figure 30. An Access Graph in node format

62

... . . . ■--■■. *- - ^ .- ■ "-1" --f'- — - - ■- - —

■2***^*^*i^~~~m~^*m**m*^mmi**i™*^mm^mmmmm^Hmmmimm^**'*^*,mm~m'^mim^mmmmmmfmm

ACCESS PATH THEORY

by movm^ tTT ^ T^ "^ COns,derinS ,he PEG ^ access path of an event is determined
IroZZf, ^P.(When n0 left lmk ex,:i,s)- Wlth al1 even,s 'eluded except those which are

llTrmwT ' and ^'^ by a left link- ln F,8Ure 5 (repeated f- convenience) the acc^

COMPARE, GENSEQ, START, BACKGAMMON

^BACKGAMMON

•\ COMPARE)

\
PLAYER.2^-JOHN] ^ INSERT)**(^FIRST-MOVE)

CROLLDIO (pumj = JOE) CTERMINAQ

T GENMEM) c GENMEM 3

CDIEVAL.1^3) (mEVALJ^T)

("JOE MOVES")

Figure 5. A Process Elaboration Graph (PEG)

63

i^^^mm^^^m^mmmmm^m*

ACCESS PATH THEORY

fh^JJ^ P8™^0-^' IS inCluaed beCaüSe '' WaS reached ^ an UP link' not a left one. Similarly, the second GEIMMEM visits

ROLLDIE, PLAYERS-JOHN, PLAYER. 1<-J0E,
GENSEQ, START, BACKGAMMON

but PLAYER.K-JOE is removed, since it is protected and was reached by a left link, leaving

ROLLDIE. PLAYERS-JOHN, GENSEQ, START, BACKGAMMON

as its access pathas before. The boxing operation done to the Access Graph is reflected in the PEG
by never moving down" in tracing access paths since the down link represents the execution of the
compound event.

Pn Still,
1 ^r I^3-" eVent,S aCCeSC Path' a n0de may be '"spected under the proper conditions

Se tfonT^' Dt ^Tiv^ deGI3ned f0r Just that purp0se- However' the question ai e5Tn

to%r condmons.rnm8 * "^ t0 the 8raph " F,8Ure 29 f0rCeS the definitl0n of those

access Jo IU Z' \ I ?0™ ^^ WaS t0 all0W any descendant of a compound event
access to its information. It only remained to decide how to "linearize" a compound event for
mclusion in the access path. The logical choice is to consider the node in
t-or the L.ENSEQ node in Figure 30, that sequence is

reverse time sequence.

DIEVAL.l<-i, GENMEM, ROLLDIE, PLAYER.2<-J0HN
DIEVAL.l<-3, GENMEM, ROLLDIE, PLAYER. 1<-J0E

The algorithm for this process is

LINEARIZE (NODE)

1. If NODE is NIL then return.

2. LINEARIZE each son of NODE, rightmost son first.

3. Print NODE

When a node has no sons, then the recursive call in line 2 will be
line 1. LINEARIZE (ML); hence the test in

64

i HI i i --' ' - .. -.-^

~-»»''^'''■''"•-'"^^

ACCESS PATH THEORY

In an ALGQUzed version of LISp(the nigor|thm js

(LINEARIZE
[LAMBDA (NODE)

(if NODE-NIL
then NIL

else if NODE.-RIGHT-LINK EXISTS
then (APPEND (LINEARIZE NODE.-RIGHT-LINK)

(APPEND (LINEARIZE N0DE:D0WN-LINK)
(LIST NODE)))

else (APPEND (LINEARIZE NODE.-QOWN-LINK (LIST NODE])

-vin^Äs 'r^frihfpEG' Z fT' ^rTo* ",f" C,aUSe S-erates a .ist of events by
first the NODE'S right-I^k then tt WDE^L ! ^^ Pr0duCes fhls list '" reverse order'

With LINEARIZE de.-ned, a complete access path algorithm can be given.

(ACCESS-PATH
[LAMBDA (NODE)

(if NODE=ROOT
then NIL

else if NODE:L£FT-LINK EXISTS
then (APPEND (EVALUATE NODF:LEFT-LINK)

(ACCESS-PATH NODEIEFT-LINK))
else .CONS NODE:UP-LINK (ACCESS-PATH NODE:UP-LINK'])

The simple function EVALUATE is defined to be

(EVALUATE
[LAMBDA (NODE)

(if NODE is PROTECTED
then NIL

else (LINEARIZE NODE])

It merely el.minates protected nodes reached by a left-link.

65

■ ■- - - - -■ -■■- - -- - i 11 nm J

HIPWtP^BJl'J.1,1! l'.J - w^^^^mmmtinijni, IJI.-!»JWHWWWI^IPW,UI«I.Inmmm^m^^mimimmmm ■uiuii.imiu J^c^pm^i

ACCESS PATH THEORY

Notice that the last "else" of ACCESS-PATH clause handled the up-lmk case. In this situation,
the event is aaded (accomplished by LISP's CONS) to the list only, not operated on by LINEARIZE
Applying ACCESS-PATH to INSERT gives

COMPARE, LINEARIZE (GENSEQ), START, BACKGAMMON

as desired, while applying it to the second GENMEM produces the same result as before.

4.7 THE PEC /IND OTHER EXECUTION MODULS

The semantics of a program executing within XREP are captured by the PEG in depicting all
he control and access issues. From this standpoint XREP's execution is similar to that found in any

language which operates out of a stack, like LISP or A! GOL. But the role intended for the PEG is
more diversified.

In descr.bmg his Contour Mode, as a structure which defines execution of block structured
programs, Johnston mentions that one of its features is that algorithms and records of execution are
separate but related components [JOHNSTON 71]. His picture of execution as a contour was
specifically des.gned to give p. ease meaning to all pnases of execution of block structured
programs, including passing control and accessibility of data. The model is separate from the
program and can be interrogated independently.

The PEG has the same flavor. It is independent of the PLX program but yet is carefully
designed to capture the structure of the production rules of which it is comprised. Like the Contour
Model, '
D

ac

lodel, a visual display of execution, available for analysis, can be related back to the original
rogram. The .ntent, however, is not semantic definition, but understanding and debugging This role
ccounts for the inefficiency in never deallocating any completed processes, a major concern of

other execution models. The entire history of the execution is needed for deb egging purpose:;.

In XRE, access paths are implemented in a configurable way. In other words, each nodt in the
PEG is semiautonomous, a result of the segmented nature of production rules. If access is needed to
a different node, then a link, oy way of the event separators, must be built between the two throuph

! ^"^ ™..hanism. The "independence" of nodes gives the debugger specific entities on
which to address the access path problem. By building or inspecting the links between nodes the
program can be properly strucl.red. In SIMULA [DAHL 66], an ALGOL-based simulation langu.ige a
similar situation exists in linking processes together. A process in SIMULA is meant to be a complete
action acting on its local data and on data generated and stored within other processes The linkage
between processes is set up by items called "elements" declared within the requesting process The
thought behind this organization concerns the needs of simulation systems. The demancs of

simulation makes it difficult to program problems in standard languages. The individual,
nonhierarchicai nature of a SIMULA process, together with explicit programmable links, evidently
better reflects simulation s.tuations.

66

. - — -■--■- ■ - ■

r ^^ immmmmmtilim. 11 mi W-B^^PPWHWIII

ACCESS PATH THEORY

The event separators in PLX are very smnlar to the "elements" of SIMULA; both have the same
basis. In SIMULA processes are best described as separate entities, while in PLX the production
rules are also meant to be independent in nature. Both systems needed a way to get the separate

process to communicate; SIMULA uses a specific pointer, while XREP does it by configuring access
paths.

All the features and capabilities claimed tor PLX and the PEG are directed toward providing an
internal model which captures algorithms acquired by an Automatic Programming system from a
natural language source, and which is amenable to debugging analysis. The access path issues of
this chapter, though emphasizing the former concerns, prepared the groundwork for many of the
debugging algorithms of the next chapter.

67

^mmam^i ™**m*mimw*mmimim

S. INTENTIONS AND DEHUGGINC

5.1 INTRODUCTION

Thus far, XREP has been described as a system composed of various programming constructs
which combine to provide an environment suitable to Automatic Programming. The overall goal is of
course to generate (or write) correct programs. In this direction this dissertation starts frorr an
existing program, uses expectations in the form of intention strings, then automatically debjgs
certain errors that arise during execution. Before the details of XREP's intention and debugging
mechanisms are aescnbed, other works that address the problem of writing correct and reliable
programs will be reviewed: Section 5.2 describes "standard" programming systems, Section 5.3
describes aspects of the program proving process, while Section 5.4 covers automatic debugging
systems. Each section will emphasize the expectations of a system, how they are recuived, and how
the system uses them to help find and correct errors.

5.2 SYSTEMS FOR If KITING PROGRAMS

Systems which provide environments for programmers deal with a class of errors normally
associated with programming details — bad syntax, misspellings, etc. They fall into two basic groups:
static compile-time errors and dynamic run-time ones. In trying to cope with either set, the software
system can only assume or expect that the programmer's input is rational, and that any simple,
detectable, obvious error should be repaired if possible.

In a batch environment the only expectation held by a compiler is that the input is intended to
make sense. So when PL/I repairs a program by inserting missing semicolons, progress has been
made, beyond the infuriating FORTRAN error message that

GO TO (10,20,30.40) I

is missing a comma after the right parenthesis. In any case, purely syntactic errors are not that
interesting in this environment, while run-time ones only cause immediate failure.

INTERLISP [TEITELMAN 74] will be the model for the discussion of what can be done by an

68

mmii'mmmmmmmmmmm'il^'''^'i^^'^-i'''m--'''^mJmmmrm>m']iimm\i:mmmm^^n^mmmH. m ^HIHIUPH»

INTENTIONS AND DEBUGGING

mcXp 0n'U7 SySten ln a0dltlOn t0 pr0Vldins a ser,es of interactive debugging tools(i),
nn 1 r,PKr.0V1erST!r

aTLJSP"0riented ed,t0r and an aut0matic error correction package named DWIM
Do ^hat I Mean) [TEITELMAN 73], DWiM does automatic spelling correction, syntax modification, and

ine^.ke based on run-time analysis of program errors. DWIM works well because it knows about

In his Ph.D. dissertation. Yonke develops a system which has similar capabilities, but which is

ÄT7KI Tl \SinCe n IS dr,Ven by external lansuaSe specifications (written by an expert)
LYUNKL 75]. Both systems show what can be accomplished if the computer is allowed to be
active in the program construction process, even though working in a task-independent domain

more

S.3 PROGRAM PROVING SYSTEMS

The intent of the program-proving community is to provide formal methods for verifying
programs. In their framework a program is augmented with strategically placed assertions tor
describing what should be happening at various points in the process. From these assertions
verification conditions can automatically be generated and then proved in various ways{ii).

The assertion language in current research is typically some dialect of the first-order
predicate calculus. Its role is to provide a secona description of the program, where the program
itself is the first - the assertions are fnus redundant specifications of the program On the
assumption that its assertions are an accurate statement of the programmer's intention, the program
is formally proved by verifying that every execution will satisfy all the assertive conditions The
assertions are thus the system's expectations for the program{iii).

One problem with this technique is that the first-order predicate calculus is not very
expressive and can produce detail in almost incomprehensible quantities. Trying to prove the
verification conditions becomes a large task, difficult for either man or machine. An interactive

proofnCOOD^Bb5] ^^ in 0ne Pr03ram Verif'C5tl0n System s0 that the user can helP Buide the

What seems to be needed is higher levels of abstraction in the assertion language, or
whatever level of description satisfies the user. If a program is to be proved, a description of its

(i) See [MANN 73] for a survey of these debugging tools,

di) See [ELSPAS 72] for a complete review of this process.

(111) In fa^ , Buchanan ana Luckham automatically generate some simple programs from assertions and
an appropriate set of axioms [BUCHANAN 74]. The formal method of generation, based on
theorem-proving techniques, guarantees that the resulting program is correct.

69

r MM^M i iiaimmp

INTENTIONS AND DEBUGGING

intent is mandatory. However, if it is going to be as difficult to write assertions as it is to write
programs, then the cost and feasibility of this process are open to question.

D. Good recognises this problem and suggests a programming environment in which programs
and assertions are stepwise refined together from the start of the development phase [GOOD 75a].
Thus a program can be proved at various levels of abstraction. For this idea to work, expressive,
formal assertion languages are needed.

If we are to construct proved programs of significant size and complexity, then it
seems that we should . . . state precise specifications. Obviously, we must be able
to state the specifications before we can prove that the program meets them.
Although some progress has been made in this area. . .stating specifications for a
program remains a difficult problem.(iv)

Many of the phases of program proving are being automated in one form or another. One that
has just begun is automatic debugging. Many difficult problems need to be solved before automatic
debugging is realistic. The next section will shew the complexity of some systems which do attempt
it in some restricted domain.

5.4 AUTOMATIC DFAllGCING PROGRAMS

The three programs reviewed in this section come from MIT, each with the flavor of Artificial
Intelligence. Each attempts to solve complex tasks within a well specified domain by applying its
"expertise" to problem situations. The automatic correction accomplished by each reflects a deep
understanding of the associated problems.

In his dissertation about understanding LOGO(v) programs, Goldstein uses an external model
language to describe the intent of a picture [GOLDSTEIN 74]. The picture drawn by the
accompanying LOGO program is then matched against the model. If a difference is detected between
the diagram and the model, debugging occurs.

Figure 31 shows how to describe a simple line drawing of a tree in the model language.
Figure 32 shows a LOGO program whose intent is to draw that tree together with its result. Several
model violations are readily apparent, specifically M4, M5, and M7. Using those violations as its
debugging impetus, h - system produces the converted program in Figure 33.

(iv) D. Good, "Provable Programming." International Conference on Reliable Software, Los
Angeles, April 1975, pg. 411.

(v) LOGO is a graphics system, devised by Seymour Papert, intended for children.

70

■w™ffPBBpBi^iiiWgiPipiPwgpw^^gpppyw^-i.--iMJ*i^i-»

INTENTIONS AND DEBUGGING

MODEL TREE
Ml PARTS TOP TRUNK
M2 LINE TRUNK
M3 EQUITRI TOP
M4 VERTICAL TRUNK

M5 COMPLETELY-BELOW Ti^UNK TOP
M6 CONNECTED TOP TRUNK
M7 HORIZONTAL (BOTTOM (SIDE UP»
END

A

Figure 31. A Goldstein tree model

TO TREE!
10 TRIANGLE
20 RIGHT 50
30 FORWARD 50
40 RIGHT 50
50 FORWARD 100
END

; version 1
<- (accomplish top)
<- (setup heading)
<- (setup position)
<- (setup heading)
<- (accomolish trunk)

>

TREE 1

VERSION 1

Figure 32. Incorrect tree program

TO TREE 1
5 RIGHT 30

10 TRIANGLE
20 RIGHT 60
30 FORWARD 50
40 RIGHT 90
50 FORWARD 100
END

; versic-> 4
<- (setup heading such-that (horizontal (side 3 top)))
<- (assume (enter TREE1 statement 5) {- :heading 0))
<- (accomplish top)
<- (setup heading)
<- (retrace (side 3 top))
<- (setup heading such-that (vertical trunk))
<- (accomplish trunk)

F.gure 33. CoTeded tree progra m

Notice that the model language is different from the assertion concept of the last section in
that it describes the output ot the program, rot intermediate states. The adequacy of the model
language is, however, hard to ascerlam, since the class of programs handled by the system does not
allow conditionals, variables, recursion, or iteration. The complexity of the debugging effort is
somewhat foreboding, considering these restrictions.

In his work on model debugging. Bill Mark has a less formal intention langjage [MARK 74]. In
his system the user specifies a "goal" along with the model. If the goal is not attained during
simulation of the model, it is debugged with that goal as its driving target. For example, a particular
business model may be set up which is expected to make six sales. If only five are made, the user
givt; the system

71

mi ■ata

*
mn^ww^v im — «■ni ■^^Km^timm

INTENTIONS AND DEBUGGING

(GOAL (INCREASE SALE 1))

as it goes into a debugging mode to find the cause of the failure.

Gerald Sussman's dissertation has the character of both Goldstein's and Mark's programs
Goldstein's effort is classical in intent: a flawed program is debugged. In Mark's work a model of

uAr^cilc^ll^^ unmtended interactions prevent the goal from being attained. Sussman's
HALKtR [SUSSMAN 731 is given a goal, but in the problem solving framework of the blocks world In
solving the problem HACKER tries to find an applicable program; if none is available it writes one' In
either case, execution of the program may manifest a bug which HACKER will try to resolve if
possiblf. HACKER'S intent is not to ju:1 solve any soecific problem, but to write generalizable
programs for handling a class of related problems.

For example, in Figure 34 the scene with two blocks and a table is the setting for the request.

(MAKE (ON A B))

HACKER finds a simple program to do it.

EL TABLE

Figure 34. Scene for (MAKE (ON A B))

If the same request is made for the scene in Figure 35, a bug occurs, since the simple program
cannot move A since C is on it. The program manipulator receives the error message and patches
the performance program so that C is first put on the table and then A is put on B

:

A El TABLE

Figure 35. A more complex scene for (MAKE (ON A B))

72

i« ^--^^MMiaM—JMI— -- - - - - - J

wmmr* w^w-^jmiii« mi., .u-iwimi ■ 11 IJ ••I.IIM !■■

INTENTIONS AND DEBUGGING

The modification to the resulting program is general enough to solve the same problem for the
scene in Figure 36.

TABLE

Figure 36. A generalized scene

HACKER basically handles three types of errors: unsatisfied prerequisites (eg., the case
above), protection violations (eg., a subgoal is undone), and violation of domain-specific "aesthetic"
principles (eg., moving the same block twice) by storing information about them in many different
system modules. The attack on a bug is a complex dialogue between various independent system
components, each with expertise in a specific area. The closed, noninteractive nature of HACKER is
impressive in performance but perhaps causes unnecessary complexities in the general program
debugging task.

Each of these theses enters the new automatic debugging area in a familiar way, with specific
problems in specific domains. However, each derives techniques which can be extracted from the
work and incorporated in an interactive Automatic Programming type of system as a set of
possibilities for trial and discussion. The immediate impact of these works will come not from results
within closed systems where myriads of second-order problems obscure their possible contributions,
but from their availability as high-level debugging tools within smart software environments.

5.5 XRRP'S INTENTION STRING MECII/INISM

As described in Seclion 2.5, program expectations are communicated to XREP via a string of
discrete events which are to be matched against the results of the TERMINAL events. When a match
fails, a potential bug may have been uncovered. The system tries to identify it, relate its findings to
the user, then suggest a particular debugging technique. Used this way, the intention string
provides an interface between XREP and the user in a form usable by both. The power of this
method cornes from the freedom and flexibility of both the content of the TERMINAL statement r;nd
its placement within the program. If either is restricted, then generality is lost in potential stages of
program development.

73

[■mT*.TrT*n; UHI!M|«l^MMII I Ji.l ;L W^ H|lll ■'WflS«P|J"MJ M*i|«pilW)P

INTENSIONS AND DEBUGGING

Pffnrt ^ remaini;8 sedions of ,his c^Pter will discuss various program errors ard the debugging

detection ofSZ IT* ^ '" m0Ct ""^ the intent,0n S,rinS w.H be fundamental in'the8

«ToHifw »^ S ' T n alS0 pr0Viar1S the necessary information to the debugger to properly
modify the program to alleviate the problem. wpeny

5.6 CENEH/IL KRROH DISCUSSION

orr^rrld6 Th5' diffi^U'! ^ '" flut0ma,,c debugging is determining exactlv where an error has
*MZH , ■! ma"lfestfon 0' * bug usually is obvious; assigning responsibility is much more

b tr c 1 "Sto
t^eX,ra0r?;narily COmpleX COn,r01 S,rUCtureS 0f the debuSg-g Programs) If backtracking, automatic or otherwise, is part of the program's control structure, the problem

becomes even more complicated. The consequence of these observations is that success in a closed
system comes from careful domain restrictions.

Since XREP is "domain-independent." it addresses a different class of problems than those

HÄrcmKaFRy
b

aSr,ated Wl,h ^^ SOlVing- SUSSman tr,ed t0 make this sa- Cstinction •I'thm
HACKER by ^epmg general programming knowledge" separate from specific "block world" details

l.lr IT\ wu andleS are assüciated wi,h Progr^ waiting flaws which are detectable at
execution time, not those which might require problem solving in the translation phase in order to
just get a program statement(vi). H « n uraer 10

stron/ml'nm^T^ ^r" ^T * ^ ^^ ^ ^ SyStem Can "helP" detect errors and ^^ke
in er.c'tivp I5 ^f*^™ 0/ correcUn* them. Of course, accepting advice from a human in an

vstem m .ht h' rH ^ ^ pr
<
eSenCe 0r S0UrCe 0f ' bUg Sh0uld be welc0me. — " the

thatTo^rh SPPP ?r/qUIPP!d I0/'' *■ The S,tuati0nS Whlch f0ll0w in succeeding sections take

backtrack) or t ' P * ^ ^ * S0'Uti0n WhiCh the USer Can reJect (causing

5.7 UNBOUND vnmnm.Es

The first problem to be analyzed is the case of the unbound variable. The situation is quite
common: a variable does not point to bound value. Consider the PLX program in Figure 37.

(/i) See [BALZER74b] for a description of a Model Completion task within an Automatic
Programming system which addresses that translation problem.

75

 - —

'. •" "m*-" ■ i -^——^—^ ""-i"""'^ i.pi-.^i.»fiiJMpii"niJ|iL|i>i.j«.jaJJ

INTENTIONS AND DEBUGGING

 >--—

A
B
C
D
E
F

B,C
(GENMEM DIEVAL^
D.E.F
(TERMINAL 'IN D')
(TERMINAL 'IN E LOOKING FOR' OIEVAL
(TERMINAL 'IN F')

Figure 37. Unbound vanable example

that in,Fitgte
P3088ram ^ rU,,' ^ PEG JUSt "^ ^^ the TERMINAL statement of E ^ ^oW like

GENMEM

DIEVAL.1^-6 TERMINAL
"IN D"

Figure 33. Partial PEG for program in Figure 37

The TERMINAL event in F acrp^pr DIPVAI I u«
contpyt oath n(P a« J T acces-'ej DIEVML.-I. however, since no such binding exist-, in the

other Drobtln^ c yr ' W3y t0 acc0mP-h th^ reconfiguration, though it may l.-ad to
Other problems. Figure oS chows a repaired vero.on of the Access Graph of Figure 38.

The problem stems from the production rule

A := Q , C

^renr^ratr"00!""0^0^6 ^ C * ^^ pr0tected from -ent B bee. use of r.venf separator , . To produce the proper Access Graph the rule snould read:

A := B -> C

76

-. .

'w^immm) ji.upij|i)4MPW!Pwi.i«fl|BBMif^(!Wf?»«flFiiVJWWiJ^«i,n)j.i^i. ui nii^!-.«*!«^ .iiKsm^^JiMUHaniMSPii MIL I

INTENTIONS AND DEBUGGING

GENMEM

DIEVAL. 1-^-6

D E F

TERMINAL
"IN D"

Figure 39. Repaired Access Graph

This example simplifies what has actually happened because the flaw shows up so vividly in the
production system. In generating a program in a top-down manner a designer defines different
levels of abstraction from which his program can be viewed. Each level is complete as a "mad ine"
assuming the right primitives(vii). If a structural flaw like this one occurs, it is probably a case oi a
machine needing access to one which is at the same level. In this example, the hierarch> of
computatior makes the process B a black box to that of C. Yet it seems that it should be otherv ise
if the PLAYLR.-l request is valid. The reorganization described resolves exactly that.

(vii) This is, of course, Dijkstra's simile In his Notes on Structured Programming [DAHL 72].

77

------ m^ J

^
■ ™^^

INTENTIONS AND DEBIIGGING

The aiBonfhm, invoked when ^n accesr. from event CURRENT to TYPE fails,is ao follows:

NOBINO (TYPE. CURRENT)

1. Fmd a previous event, EP, which has an instance of TYPE in it.

2. Find the common rule ancestor, CA, to both CURRENT and EP.

3. Inspect the production pje for CA for the form

CA :- . . . X , . . . Y . . .

where X is in the context path of EP and Y is in the context path of CURRENT.

4. Changs that production rule for CA into

CA :- . . . X -> . . . Y . . .

5. Back up the process to the event foilowing X and continue execution from
there.

In the example EP, the previous target event is the GENMEM. The common rule ancestor, CA,
is event A. X is event B ; Y is event C . The rule change in Step 4 makes the B event in Figure 40
oval instead of rectangular, thus making the GENMEM accessible to event C and all its descendants.

A few other things should be stated about the algorithm. In Step 1 the context path of EP is
not subsumed by the context path of CURRENT; otherwise TYPE.-l would be accessible to it.

In Step 2 the common rule ancestor may be different from the common ancestor if viewing an
Access Graph. The PEG, however, makes this distinction obvious. Note also that there may be more
than one rule whose change might colv» the problem. The algorithm picks the "nearest" (in terms of
time sequence) first.

In Step 3 a rule like

CA :- X , Z . . . Y

may be the culprit. However, changing it to

CA ;• X -> Z ... Y

79

 , , ,

mm-^mmi 11 i ^w"w^w»«»«i ii ui 11 u i m~**^m~*~m*mmm

INTENTIONS AND DEBUGGING

M

GENMEM

TYPE.l

N

GENMEM

TYPE.2

L
M
N
0

M -> N -> 0
(GENMEM TYPE)
(GENMEM TYPE)
(TERMINAL TYPE.-2) I

TERMINAL

Figure 43. The repaired version of Figure 42

5.8 WRONG UINDINCS

The solution to the unbound variable error of the Ust section involved reorganizing access
paths to make the proper information availabk A byproduct of that re-onfiguration is that all the
information in the path of the once missing type becomos available to the original requestor. For
example, in Figure 39, event E now has the DIEVAL binding in its path as required, but everything
else generated by event B is available not only to E, but to 0 and F as well. This situation, which

81

L

wJmmi^ii^mfmmmmmiiiiw^mm^imm^mi^Kmmmi<imm''^mmmmmmmmmimmim

INTENTIONS AND DEBUGGING

The case of a wrong binding is more complicated than the unbound variable situation because
of the larger variety of possible solutions and possible errors. In the unbound case not much can be
done until some binding is found. The manifestation of the wrong binding error, however, is likely to
occur during a match of a TERMINAL to the .ntenton string, when much more information is available.

Consider the Access Graph fragment in Figure 44. If the rule for event F is

F :- (TERMiNAL 'MOVE' TYPc.-2)

and the current state of the intention string is

. . . (MOVE 4) . . .

then a failure occurs since the terminal outout in F would be (MOVE 5). Assuming that TYPE.l is
supposed to be 5 and not 4 (perhaps verified by an earlier match in the intention string), then
(unless a major flaw is responsible) the problem could be a simple error in the reference
specification with the TERMINAL event, TYPE.-2 should be TYPE.-1.

The only debugging that can be done here is to check the other bindings n that access path
and see if one works, 'f so, then some sor' of confirmation is required and the change ..■ the
production rules is a simple one. If the access was done via some arbitrary expression like
TYPE.(ADD X Y), then little help can be rendered.

Note that this s mple technique can be tried if an access like PLAYER.-2 hüs no binding. If
PLAYER.-l does, it might be the correct ore. Thus this method should be trier/ just before the
NO-BIND algorithm is attempted.

82

vmmmmmsmm^^-T

TypE.1-^-5

GENMEM GENMEM

1 1
TYPE. 2 .— 3 TYPE.2-^4

I
Figure 44. An access graph fragment

ITENTIONS AND DEBUGGING

44 is
A more subtle rase occurs when there is a structuring error. Suppose the rule for F in Figure

F :- (TERMINAL 'MOVE' TYPE.-l 'AND' TYPE.-2)

and the current state of the intention string is

. . . (MOVE 4 AND 3) . . .

Then the failure, due to the mismatch of the TERMINAL output (MOVE 4 AND !j) and the intention
string (MOVE 4 AND 3), is not so aasily repaired. The search for the proper binding s jcceeds
outside '.he current access path, indicating the need for an application of the NOBIND algorithm. The
resulting Access Graph, shown in Figure 45, resolves the problem.

83

 _• ■ —

INTENTIONS AND DEBUGÜING

TYPE. 1-^5

1
GENMEM

I
TYPE.2-^3

GENMEM

I
TYPE.3—4

I
F

Figure 45. A linearized modification of Figure 44

The most substantive error situation is the inverse of the last example. With Figure 45 as the
starting point and the same F rule as the preceding paragraph, the intention string

. .. (MOVE 4 AND 5). . .

would provoke an error since (MOVE 4 AND 3) results from the TERMINAL event. The fix in this case
— to turn Figure 45 into Figure 44 -- comes from changing

E :- (GENMEM TYPE) -> (GENMEM TYPE (-> F))

to

E :- (GENMEM TYPE) , (GENMEM TYPE (-> F))

In other words, the event separator " -> " must bö changed to a ",". This modification is just the
opposite of what the NOBIND algorithm does, hence the inverse notion. A simple modification to that
algorithm allows it to handle this error condition.

84

in*" —— "-^:—

INTENTIONS AND DEBUGGING

Notice thst withou» tne intention string to guide the results, very little could be done in these
situations. The information conveyed by the matching process of TERMINALS to the intention string
gives XREP's debugger a firm basis on which to diagnose the problem. Even if the situation is one
which cannot be handled by XREP, the attempts it makes will at least be reasonable.

.9 RKCURSION /J/V/} STRUCTURE F/iVLTS

The last section described errors relating to binding issues which were quite clear-cut and
needed debugging. Now a different kind of probleir, will be viewed, one in which there is "nothing"
technically wrong. Instead the error will be strictly related to poor structure and an intuition about
how a particular Access Graph should lock.

This problem has a natural evolution and substantial basis arising out of a typical situation. An
existing program needs to be modified. If tne changes are made with only a local or narrow view of
the problem, the rooultinc; program can develop a "patched-together" look. In fact, HACKER gets
exactly this kind of criticism from Suscman himself. His system creates a program in an 3volutionary
manner without the ability to step b'ick and review it as a complete entity. This is obviously not a
charge against HACKER, for that ability spans the entire intellectual programming discipline. Still,
some "global" improvements can be made in a program if some assumptions are allowed.

The Backgammon example will again be the model. The actual rules for the start of a game
need to be extended from those given on page 11. The complete statement is as follows:

Tlifi ffamr tinrls hy having oncU iilnyor roll n dio. The plnyrr with tho largost
vnlufi makfts iho first mow, comisling of his roll and the roli ryf the other player.
In case of a tie the value of the cube is doubled, and the process is repeated.

The cube, initially I, represents the value of the game in any arbitrary unit. Ignoring the tie
condition for the moment, the program is shown in Figure 46.

85

mmm**~*~*~^mmmm^mmm—mm~^m*^mi^mmmi~»^^^mmm

"1
INTENTIONS AND DEBUGGING

BACKGAMMON s« START , REST-OF-GAME
START :- (GENSEQ PLAYER T (-> ROLLDIE)) -> COMPARE
ROLLDIE := (GENMEM DIEVAL T) ->

(TERMINAL PLAYER.-! 'ROLLED' DIEVAL-1)
COMPARE := (INSERT PLAYER.ONDEX MAX DIEVAL)) -> FIRST-MOVE
FIRST-MOVE :- (TERMINAL PLAYER.-l 'MOVES'

DIEVAL.1 FROM PLAYER.-l 'AND' DIEVAL. 1 FROM
PLAYER.(FIND (NEQ PLACER PLAYER.-l)))

REST-OF-GAME :-. . .

Figure 46. BacKgammon program without tie condition

This program is essentially the same as the previous ones except for the added detail h ;he
TERMINAL events. The ROLLDIE nonterminal now include« an observation of the rolling process and
the FIRS i-MOVE TERMINAL makes the move explicit In terms of die values (as given in the English
statement above). *

Given the following initial API top-level assertions

(ASSERT (AMO JOE PLAYER))
(ASSERT (AMO JOHN PLAYER))
(ASSERT (AMO 1 DIEVAL))
(ASSERT (AMO 2 DIEVAL))
(ASSERT (AMO 3 DIEVAL))
(ASSERT (AMO 4 DIEVAL))
(ASSERT (AMO 5 DIEVAL))
(ASSERT (AMO 6 DIEVAL))
(ASSERT (VALUE CUBE D)

the execution of this program will match an intention string like

(JOE ROLLED 5) (JOHN ROLLED 3) (JOE MOVES 5 AND 3)

My initial attempt to implement the tie condition quite naturally involved only the addition of another
compare rule to handle the failure of the INDEX function's attempt to return a unique PLAYER when
their die values are the same. The program, including this new rule, is shown in Figure 47.

86

 - ■ -

INTENTIONS AND DEBUGGING

th. I ^ Tc^cc^l genera,,0n numbers for PLAYER »• ^ 3 Or 4. They btc.me that h.gh because
the second GENSEQ had the Kf| GENSEQ m It. access path. WorKing backwards from fh. Access
braph, I realized that the proper structure should be like the one shown in Figure 49.

88

aACK GAMMON

/
START REST-OF-GAME

I
GENSEQ

\

\
PLAYER. 1—JOE PLAYER. 2—JOHN

I I
'—^ DIEVAI

\ /

DIEVAL.1^4 DIEVAL.l —4

COMPARE

"TIE"

I
(ASSERT (VALUE CUBE 2))

I
START

I
GENSEQ

PLAYER.3-^JO£ PLAYER.4-^JOHN

I I

Figure 48. The Access Graph for the tie example

■ ■ —

INTENTIONS AND DEBUGGING

to ,h/cL ^ ',? 8üre 8 ÜCCUrred At l00 lüW a level' '"^ '^levant mformat,on available
to the second d.e-rollmg node. In Flgüre 49 lhat s^uat^n was remedied by making the recursion
occur higher than the GENSEQ. This N* requires the presence of a new 5,mpie even^ INITIAL-MOVE

Figure 50 mana8e the reCUrS,0'V A new Se, cf 'ults which embody *** ''xed PEG ,s d.splayed m'

BACKGAMMON

/

START

INITIAL-MOVE

/

REST-OF-GAME

I
(ASSERT (VALUE CUBE 2))

GENSEQ

\

INITIAL-MOVE

I
PLAYER. 1*-JOE PLAYER.2^JOHN START

DIEVAL.1—4 DIEVAL.1-^4

COMPARE

1

GENSEQ

/ \
PLAYER.l-^ JOE PLAYER..'

1 I
JOHN

"TIE"

Figure 49. Corrected Access G.-aph for the tie example

89

J

INTENTIONS AND DEBUGGING

Thic kind of prohiem is d'ff.cuit to formalize because of its wide range. When an implicit
as'.ijrnplion -- whether built into a program or unctdted Dy the user -- is violated, some system

module must recof.mro the 'itu.ilion and act ^ccordmtjly. StMtman*« HACKER has a Critics Gallery
which watches over the :oae generator sc that when a proposed program statement is about to
violate some condition, the .ippropnate cnhc will complain. This demondx) approach seems to imply
that each assumption ncedi its Own critk Or expert, a possibility which may cause a computational
explosion Automatic Progran.mmg efforts wi'l undOubtMÜy uncover many of these cases.

The RES'SUCTLIPE aigoritum, mvoAPO oy tne detection of a generation number overflow,
follows. The PEG for tms example, snown ,n Fioure 5;, is annotated by the locals of the algorithm,
while some of 'ts obvious links are not .ncludeo. nemember that this PEG represents the Access
Graph of Etgu'e 48.

RESTRUCTURE (GUILTY)

1. Find the ru;e father, RF, of the QULTV GE^'M or GENSEQ.

2. See if RF appears twice in the current contpxt path, if not, the algorithm fails.

3. If so, l,ni the i'aicf^therr of each RF; call them GF1 and GF2. Let the two
rules QTi ana G"-! have the follow.nj form:

GF1 - X scpl RF sc-p2 v

GF2 :- 2 sep MOVABLE-STOFF sep PF

4 MaKe t.ie fd!!owifl| chdng^s to ine proäram. Cnange the GF1 rule to be

GFl :- X sepl TEMPsep2 Y

Changs the bF2 rule to iie

GF2 :- Z

Insert the rules

TEMP :- RF
TEMP :- RF , MOVABLE-STUFF -> TEMP

(ix) A demon is a module which oversees executmi and is invoked when some specific condition is
met. P./I ON Conditions are an example of Memon p ograms.

91

INTcMTIONS AND DEBUGGING

5. To CO" pjte whc^ tvtntl COmpciM MOVAB^E-STLiFF, inspect the original GF2
rule from right to .eft, ignerinf RF. For every Ei encountered do the
following:

j) If Ei niaKe-. a refcence to a prevo^s event wnich cannot be moved, then
Ei cannot be moved. Tr s dedcion ma/ Kcvt to be aeia/ed by step b.

b) if E. ma^^s <>ny MMftiOnt a^d las aexendants which cannot be moved,
t cannot oe movea. OthW «NM it can, tnis includes the case where

(lepena^nts are «raitint for A cec s on abcut Ei >tseif.

c) '^e proces-. stops Aren E cannot oe movea

in

(BACKGAMMON J

N:

Lu
START -^BEST-OF-GAME^

Tu- Zt .

(^GENSEQ y^COMPAREy—^FIRST-MOVE^

lovablt-ttuff

Q X TERMINAL M FUNCTION 7)—^TERMINAiy-^START 1

Curr«nt

■TIE- ASSERT CUBE TURNED
TO 2"

(GENSEQ V

Figure 51. The annotated PEG for Figure 48

A few statements should be made aoout this algorithm before tracing it for the BACKGAMMON
example. Tha MOVABLE-STUFF computalion is done to find those events which will not be affected
by the relocation performed by the RESTRUCTURE algorithm. The move is both aesthetic (since

92

INTENTIONS AND DEBUGGING

5./0 PHh:u)\i)ino\s nsu nmoNDmoNS is KECUHSION

The res'ructunng techniques der.ved ,n the last sect.on can be applied to a class of algorithms
exemplitiec öy the instructions which might be found on a shampoo bottle.

1) Wet hair
2) Lather
3) Rinse
«) Repeat

Statement 4, the source of the problem, *M rot spec', the ctartmg iteration pomt; where should
we repeat from' Not.ce also that no ..after **•! traten point is chosen, the lack of a terminating
condtion w! cause 'his a.gor trm to :00p 'orever. ThMt Kinds of flaws are typical of
hurr.-n-or.ented instructions; the .ser ,s Sopposea to app,/ corr.mon sense to a situation to resolve
a^biguit.es. in the shanopoo e.arrpie everyone would repeat from Step 2 since wetting already wet
nt«r is nonsensical. Hardly an/One wOuid lather up more than twice.

hi , 7T^'S P♦r0Dlerr,, a,n0ng ^^ 'S descr'bed ^ '■ 0- ►«" '" ^ Paper about programming m Engl.sh
LHiLL 72,. its message 's clear; Automata Programming will have to cope with poorly specified
a.gontnms and find methods to cor'ecr.y translate them.

Given no otner mformat.on. d |«ko y guess for tre start.ng pomf of the shampoo's "repeat-
statement is the bepmning one. "wet ha.r." ".egect ng the infinite loop, that mterpretatior «s
_ncorrec oecause it includes a preco^tcn. wef.ng the hair. ,n its ma.n loop body. A program in
KLX tor this simple aigonthm is shown m Figure 52.

SHAMPOO
WET-HAIR
LATHER
RINSE
REPEAT

- WET-HAIR -> LATHER -> RINSE -> REPEAT
- (TCRMMAL "WE'T.'NG HA,R-;

- (TERMINAL FATHERING HAIR')
- (TERMINAL 'RlNSiNG KAJR*)
- SHAMPOO

Figure 52. The shampoo progra m

As written, the program will generate a terminal string like

(WETTING HAIR) (LATHERING HAIR) (RINSING HAIR)
(WETTING HAIR) (LATHERING HAiR) (RiNSlNG HAIR)
(WETTING HAIR) . . .

However, a correct intention string for the shampoo exercise would be

(WETTING HAIR) (LATHERiNG HAIR) (RiNSlNG HAIR)
(LATHERING HAIR) (RINSING HAIR) . . .

The detection of the precond.hon error m this simple example from the correct intention

^

INTENTIONS AND DEBUGGING

string * not complicated. It a TERMMAL gene-ateo a nonmatchma ofrmp which KM occurred before,
the precondition error might he hypOthttiMA If the program is ..Mowed to continue, and the next
TERMINAL does match, tnen the hypothesis is strengthened. In the shampoo program the second
(WETTING HAIR) string does rot match the intended (LATHERING HAIR). If continued, the program will
however generate (LATHERiNG HA.R) as de<ired. The precondition problem seems to be at fault(x).

The REMOVE-PRECONDITION algorithm to be presented shortly assumes that »he precondition
event. PRE-EVENT (the MKOnd (WETTING MAIR) string), and the desired event. DESIRED-EVENT (the
second (LATHERING HAIR) string), have been identif.ed. The algorithm and an annotated abbreviated
PEG follow.

REMOVE-PRLCONOITION (PRE-EVENT LESiREO-EVENT)

1. Find tlie common rue father. RULE-FATHER, for PRE-EVENT and
DESIRED-EVENT,

2. Check il RULE-FATHER-s first son. PRE-FATHER, generated PRE-EVENT. If not,
algorithm fails.

3. Check if RULE-FATHER has already appeared in the PEG. If not, fail.

4. Take the rule m question

RULE-FATHER .=• PRE-FATHER sep rest-of-rule

and rewrite if as the pair

RULE-FATHER :- PRE-FATHER sep TEMP
TEMP :- rest-of-'uie

5. Replace instances of RULE-FATHER m t. j right hand side of all production by
TEMP.

(x) Since having a postcondition in the mam loop is exactly s/inmetric to the precondition case, it wil
not be discussed otner than in this footnote.

95

INTENTIONS AND DEBUGGING

^SIRED'EVENT8^^ l' fü ^TV* ^f^ ^ Chan^ the eM°" environment for UtblKtD cVENi, mrl.,n3 ,J unmatchable with th« inttntiOfl ltrin| if execution i| continued.

Of the^ohll^f '^ t^r "C,Ve bePn l0CatCd• the re%t ,0ll0wf- This s'tu^l0n « **** to some

£,; ,, f ^ jearCh inve-t'3ateG generates programs from vanous input descnptions I/O
pa^s. ellipses, etc. One of the examples i« the feliowini aescr.ptions. I/O

INPUT OUTPUT

(A BCD) -> ((AB)'AC){AD)(BC)iBD)(CD;)

nd\r n. f'. !" tr:erj t0 'cen,,f/ ,he rtCür,ion P0int in ,he o^M '»t. One. (/
and (C D are located, the correct pro5ram wnl be generated. If this induction process
else can be done.

t list. The
(A B), (B C),

process fails, little

by bett
necess

The same it true for the REVGVE-PRECO^ITION algorithm. Until this situate can be resolved
tter debugging mechanisms, .mplerr.entation of the algorithm ,s impractical Some of the
ary improvements will be oiscussed in Chapter 6.

s.n KI:SOI.II\C pHowMi-m. nunHKNCEs

l*no J^ '^7°' rjltuaf,0n t0 be *«***, reso^ng pronomal references, is common m natural
language translation programs. Charmak states the general reference problem as follows:

If i tell a computer -Jatfc r.as » top and N/ary also has a top," to show a minimum

Of underrtand.ng the machine must realize that I have mentioned two different
tops. It will need some way to distinguish the two objects mternally, and since in
bo h cases I used the phrase "a top," tne English description will not suffice We
Wl. JST* '^ '^ 0bjeCtrj dre rePresented by »wo distinct symbols, say, TQPl
and TOP2. Unfcrtunarely, when people speak, they don't refer to TOP2, they say'
Mary s top." or "the top Mary found in the woods." It will be necessary for our

machine to take such English aescnptions and decide which (if any) internal
symbol is being reterrea to. This, simply, ,s the reference problem (xi)

Ru!tm^arnvk\"C?[lteX!uand ,he ReferenCe *****-' }Jnlu"'1 l***** *****, Ed. by R Rustm (New York: Algonthmics Press), 1973, pg. 311.

97

w^mmm^^**

INTENTIONS AND DEBUGGING

acce^^t'hr u«" ^^ u
addressed 5everal ,im" i" ** ^eporf in descr.bmg both PLX and

STÄ ^r^ iÄit^some pronoün form> the ~ p— zz

statementT ^1'' lanSUd8e Pr0gramS, reS0,Ving * Prün0mial reference l? an 'mediate concern, a

immed.ate ^PS "ono ^ '^ S COnSiS'ency 's h'^ responsibly, not ansv.ermg

The pressure witMfl an interactive Automatic Programrrnnp system ,s «MMMI n i

no, Ques„on ar.:.L8 'b
S:,":'en'er

e
a
0

e' ~ »£•»£ ***** Second,,, the ,0a, 15

represdntaNona, wa, ,oget„er J.u, deb.^ng P^O.Id.es m"nS Pr0,"d,n8 he,P '" '

p'oj:z^z:TZ ZoZV1: ?v; Thv',,uä,ion 's as •o,lo-"' •- •—«
-X- dunn5 „ecull0n I ^ Ä^lXÄnS; ' " ,3) XREP ,"eS ,0 reSOlVe

whenmtretha;0,d
e„;': % ll"X, reiQTf0anamb,güOUSre,erencelike",h'<"'**'■■

va.oe." The « ,s ,he ".fs, S.'S^r r^^'rAST "" ^ 0"e ^ '^ '"*"'

The problem is solved as follows:

If the first position ,s unknown, i.e., it equals fT, each possible type can be
hypothesized to see if the reference maKes sense. Th.s step wT be

"snt9c;sr^D
a

or
TotrNAL wrh wi"reso,ve the prob!- * ~r

^lo^eZ^ir USeS ,h,S Var,ab,e ^^ a Ch0'Ce ^ b-d

la'tchl^1 t1^ TS thiS Variable ,S enco^t^ed and the mtention string
matches other than this unknown variable, the proper value for FT can be

SÄKiSS ^ *** ,he tyPe 0f the —^ ^ '"the6

3.
If no resolving TERMINAL is found out the program concludes correctly, the

INTENTIONS AND DEBUGGING

hypothes^ed type ^s^ned i« Step 1 i, a.u.ea correct ard ..erted in the
program.

4. When the second position of the typed vanable i« 'X, XREP must also fmd the
correct binding and insert the proper count in place of 'X.

An example can be oiven from fhp> PArvrv i/nuriM

PLAYER.,. ,„ z npsi-Mo-w pr„r, ^^^^jfT^Jrr,ha' 'he "^v"^

FIRST-fyiOVE :■ (TERMINAL TT.W VQVES'.. .)

If the intention string for the program was

(JOE ROLLED 6) (JOHN ROLLED 1) (JOE MOVES 6 AND 1)

VTM MOVESeAND"!^ ^T" ^ *** ^^ ^ when ^RST-MOVE generates

found übe P AYER Tt^hTtJ^T ^KT^«^ ,S matChed t0 J0E' whosl t e
first one found Thus PLAYFR I " Parh ^ * PLAYER b0und t0 J0E ^* « to b found. Thus PLAYER.-l resolves the reference and is substituted in the program.

b» the
Progr

be made Though this example and process are not particu-arly profound, several interesting points can

• IHil tm of * Uuonuon strin« rnakos si,nPlr rrf.rrnrr »rohlnns „m,,/, ,. .,0/w.

* rU^^rT^xT TX' f** * ^"^ l,r0hl("n * nalUrnl b***"*** h runrr mr i or \ romitononi.

' ."MZ"/./:I """■ """'■""-"»- "■•■• "'-^ ""■--«'—'■

99

 I

6. CONCLUSIONS AND FUTURE DIRECTIONS

"rnis report has investigated _sorne rerresentational issues for both writing and analyzing
programs within a hypothetical Automatic Programming framework. The motivation for many of the
forms and analyses ongnated in an attempt to deal with situations likely to arise when a human
describes an algorithm ;,. a computer. Within this paradigm the goal that the programming language
should mirror natural language methods whenever possible accounts for the production system
approach to PLX, its oata types, and structured organization. Similarly, the problems addressed by
the various debugging discussions were meant to model common situations which, though natural in
human communication, are imprecise or ambiguous in computer terms. The rest of this chapter,
divided by the-.e language and debugging go*\s, will review thus report's accomplishements, and
suggest future directions, while identifying problems discovered during the course of the research.

6.1 THE PRODUCTION LANGU/ICS

a
My original thought about a target language for Automatic Programming leaned toward finding

process representation which was both machine oriented and had a "programming" flavor. A
production-type language fulfilled both criteria, satisfying my initial goal. Next, I had to augment the
standard notion of a production language with capaoilities I envisioned necessary for the Automatic
Programming task: intention strings, data generators, execution history, etc. With each added
capability, PLX tooK on a more important role in tne project than I envisioned, important enough to
warrant an appraisal of PLX as a language oevelopment.

It has been said that a new programming language must contribute an order of magnitude more
conceptual power to gam acceptance as a new veh,cle [WILE 73]. That measure is hard to apply to
PLX, since i was not designed to be used by human programmers; an appropriate alternative
benchmark has >ot yet been established.

What can be measured is the effectiveness of PLX to deal with its three main issues:

1. PLX as a language.

2. The control structure of PLX.

3. The data generation and access mechanisms.

100

MBMaalaMaaaaB>_aMa-a-

CONCLUSIONS AND FUTURE DIRECriONS

Lnitannar 4t|NWlJ

First of all, prooramc can be written m PLX. Thi« obstrvation reacts to the range of
processes for which PLX is intcwM, i.e., those which Automatic Protrammmg might attempt to write.
Though only a few ^Ogram (actu4lly Mfmtnts) were presented, others not included in the paper
were written to insure that the lanouage constructs used were adequate, and those needed were
easily implementable as well as consistent with the formalism. The BACKGAMMON segment was
sufficiently complex to test the adequacy of many of my representation goals: heterarchical
organization, natural data referencing, and so forth. If an Automatic Programming system is built
arounr) a lAnglMge li'.c PLX, the present research will provide sone, but not all, the inputs
necessary to conjure the bes» targe: lanSuase. Other language goals not tested by this
study, like the ■.oherency of larg« PLX program«, »fflC»ncy, and ODtnm/ation, also need to \^
studied before any final conclusions can be made. Designing a computer language is an evolutionary
process; PLX, as described here, is a first pass.

Control Strnrtnrr in /'/, V

Thn control structure of PLX is difficult to evaluate. The clarity in passing control from event
to event, and the simplicity of picking production rules and appending them to the PEG, added
substantially to understanding the behavior of a PLX program. However, the backtrack mechanism
for driving the productions was a mixed blessing. Thougn it allowed a "successful" execution to be
found without worrying about fals? paths, it came at the expense of making firm commitments in the
error detection phase impossible. Winle fhis i« not tne first time general backtrack has caused
probiemsd), several distinctive Mtuations did arise.

if a top-down, syntax-driver, parser picks a production which causes a failure, the proces1" is
Dacked up to the bad choice and a new rule is chosen. However, consider the PLX possibility vith
the two rules

A :- (COND pred) -> B
A :- C

An ALGOL interpretation of this production pair might be

IF pred THEN B ELSE C

If the predicate in the COND event fails, the action is clear, choose the A := C rule. But what if the
predicate test passes, B is entered, and a failure occurs; should we backtrack, as PLX usually does
now, or debug? In the ALGOL case, once B is entered, C is never again considered m this iteration;
in PLX the failure in B is amoiguous. This is a general issue with generative systems: how is
backtracking prevented when real errors are present'' The utility of the TERMINAL statements can
be seen in this situation: E>'ent B can output enough information to identify the manifestation of a
possible error. This solution will not take care of all cases, but it is certainly adequate for a

(i) See From PL/ISMW to OOHNWKM -- A Gmmk /Ippronrl, [SUSSMAN 72] for a similar situation.

101

CONCLUSIOMS AND FUTURE DIRECTIONS

substantial set. in no case did I ever confuse a real error with a normal backtracking situation (while
watching the process at a terminal); whether a novice will be so adept is a different question.

A different, less substantial issue in this area concerns varied control structures for producing
iteration. Between the GENSEQ and production rule recursive control mechanism, all iterations are
possible. However, largfl ones could easily cause an explosion in PEG size. One solution might
incorporate some loop skeleton or frame structure to represent a loop, with local changing values
updated as indicated. More important is that such a frame may be the basis for understanding loop
execution and their associated problems. In any case, some more specific loop structures .>re
needed m a complete Automat.c Programming target language.

Dntn Grnrrntiou and Irrrss Mrrhnnivns

The data methods m PLX attempt to irKOrporat« a problem-solving function as a syn'artic
language device. The acces; pat I searcres, tne ralativa reference types, and the generators all try
to retain and use dynamic 'nformaticn m a manner natural to English. Keeping these functions in the
language illows a fiex.biMy of expression and an information gam which would be lost if all
refarence^ were resolved (or aitemoted to be resolved) at translation time. The major contribution
of PLANNE,-? [HEWITT 72] was the fcma.ization of powerful problem-soivmg tools, like backtrack and
pattern ,r,vOKed proceoures, into a cderent language. PLX does the same with its typed variables.

The oasic ^dea m accessing dynamically produced data is that data has a position within an
execution that carries information which can be exploited to the system's benefit. For example, the
reference

DIEVAL.1 FROM PLAYER.-2 FROM ROLLDIE

from page 55 not only shows how an ambiguity can arise, bu. gives a graphic interpretation of it as
well. If the manifestation of all proolems were so explicitly capturable, debugging efforts would be
minimized.

A different situation, in which tne ipalial natura of data is natural and easy to accept, exists
when complex linkage between two data items is necessary before an association between them can
be made. For example, in a card game, a request for all the Kings a particular player holds might be
something like (HAS JOHN KING). Requests like this generally fail because players have cards and
ca-ds not players have rank. So, some inference mechanism must find the appropriate linkage to
make the request legitimate. In PLX if the cards are generated after a player, the player and the
cards are associated merely by being adjacent in the same access path. This association, powerful,
simple, and intuitive, is easy to express m PLX.

The spatial positioning of data can also be appliea in a manner not currently allowed in XREP.
Recall that when a typed variable is unbound, the NOBIND algorithm tries to find the required
instance, then reconfigures the access caths so the request succeeds. In solving the problem, th*
algorithm makes available not only the requ.red data, but everything else which may be in its acce^

102

^

path as well. This Imea. izabon process
undesirable if an alterative existo.

CONCLUSIONS AND FUTURE DIRECTIONS

lay or may not cause future errors, but generally it seems

to another when t. r * * ^"^ »'^ "^ Z0M "^ da,fl fr0m °™ ^W path
hem un h,0?! V i 'T^JZ**' **** UKe *** * accesi ^b * ™^ & values) and backing

em up h Sh enough m the PEG .o O'hers have access to them. Th.s idea is mtnaumg because oi

JtT ' ST ' Can ^ d0ne W,,l' SOme ***** *"»»*• ^ ^ INSERT, thedebu-np

i hha";:::'?.: 7^1^M/ cor'cern '•with how natürai such a ^^ * > *~nf^ tngnsn nas a correspond ng construct.

oath, t 2S!Ü L0lü,l0n, 'S t0 Perr'llt ,toc,iri,i0n« '" ,he '««iun«. If a reference across access

PLX m v b. t ? f^ de;iär,,t,0ns are n0t ^ 0' "•*'•' 'ansage, including them a language HKe
PLX may be perfectly sound; certamiy they o,mpl,fy problems liKe these, though perhaps only locally

EmJa TJ ^nM0" T^^0" ^^'^ PLX "^ Sh0Wn t0 ^^ a f0rm Mtür«"y ccrrespondmg to
situalJ^ ' "• ^^ :",e ""DEX and Fi,ND ,UnCt'0nS handled a ^»»V Of common
situations. Still some improvemonts are possible. One is to allow a GENSEQ or GENMEM to Iroduc*
previously generated items. Recall that ,ts mernoers now cone from asserhons ,n the pToba

ST^JT da,a b"e ;See ^^ 3n Th'5 faClhty ^Uld «*• an -terpretat on t a state'men
like generate a sequence of all the e*,st:ng players who nave a King in their hands."

FIND /''r ^^ ,S a Pref 'e 'orm*U2aUon of 'he capabiiitiM of these methods. The INDEX and

toub e" A"1: tr f S Ca,e5Cry- S^ ^ ^ ^ 0f ^^ ^ «^ ^- -
tua^ on. ra!PH h tn 5 '^'^ Can ' PreCISe e^,anat:0n be 'or-^«'ed for the anomalous

ran 'ard
q
0

U: rof ^ T 0 ^^ '" ,he ^"^ ""duration of PLX^becau.-.e the e'act
range and domam of the functions are unknown. The lack of formally is not disturbmp vet-
experience with d particular metnod is generally required before formahzation ,s po ble 'som '

ZlZTnlT been ßa,ned ^ ,he eXPer,rnentS 0f ,h,S d^^ ^ - -ed'ed forprope!

6.2 rm: wc. iNrmmom, /WD OKBUGCING

PEG Z^ll üiTi^ I' ^ ^ dre 8r0Uped t0eS,her because of ,heir interdependence: The
*Sl-Tl n'aj inf

l
0rmat,ün struc,ure r^««l e^^^ion to the production rules, guides the

debugging process. wh:ch ,s in lurn often actuated by intention stnng failures Each w I be
reviewod as an entity and as a part of XREP.

103

CONCLUSIONS AND FUTURE DIRECTIONS

w.lho^t a great deal o(comlotl ^ > W™ly COmn'c'r" and K ,h^ "<*< he solved

'..teract IK |ry,„S to »ene-ate OrO.ram,. U^.^ ' ' '"*»** ^ COmpot.ng ,yrAe„

•Vtlm. I. to g.ve the .„ta, „„„ ;,ee°om in . lrk . ^ ''1!""' 'n m0dern "«V««"*«
' "at sol.tron betöre .ivM. control bar. To C ^ 0 ' S* Pr0S""""er nearer to the
-tended to work ,0 „,■: dire'ct on P'oerammer. XREP's debussln6 algbrdhms are

.epreSen'üt!,oi'n,sdö°.er:d'l'bvexPEpd::r3.r3 321^ be"USe ^ de0e"d " =»-'-'
-etore. ratber ^J^^^Är^rXTjSTr ""^T'""8 V™

work and how they can be improved. ' SCUSS what rnakes ther"

y on the

.nder-Tand^ sSX STJI 'r1"1'0" ,0S<"her W'ih ' t!,"'c>(e,e "«"•««" KW«» an
oe.ore sobctln anal - 5 " po- bVe nLZ?«- TTl H0WeVe'' muth ™'e ^ —»»"

-a„onS leaLg to tbe MÄ^^HTT^ ^^tToIr ^ ^

A sophisticated matcher could makn an hi«A „<
routines could acce-s for rL, J/T A T 0 assumptions which individual debug^n?

How similar it the Output to the target'

Will some simple reora-nng withm the strmg work'

Has the output appeared before'

Does IM current output occur later m the expected Output'

Has some pattern developed which „Hows a system pred.ction'

Th
e

■oold even addre« ddf r!i ° nJl "1 L00Wn r.'0'5' 4 p'0Mr "«"»"• <" "■»"»' t.chn.ooes ^ÄT™- d',,"u" •^" --;; p'ro'b,;.:: ^^r; g program segments is the

env,,ol;ö^:r^b',^bbu.50:Vprl•nän,xdPEP,,^•du,o:t
ä,;c1.

e^^or cor— * •««* *
-ore ddbcult. Cont.noed research ^to L'f 'i'".3 ' '" ""'' * '" ""*" "< ™e"'tud. (at least)
>ies,gn of a "hbrary" old.hn6 I, K Cla"'')""3 "« tneor.z^. about bugs can acluattx follow the

onJh. bas btsetndenbtd'fb'og qüei Wh,Ch ""^ * '^"^ * " 0"-"™ "-' - ' 'ool

105

mmm^~-^^^^~- ^^^^m—^^

LDAHL 66]

Dahl. O.-.J.. and Nyg.aro. K. "SIMULA - an ALGOL-Based Simulatnn Language"

STSTSli ^ /,M-f*Mfa" ^ Co«,«!«, Wnr/„«.ry. Vol. 9 C.pten.ber 1966)
pp. 0/ i -0/ Ö.

[DAHL 72]

Praehss|
0i9J72D',kC,ra, EW: ** ^'^ ^ ^r'ir'ur',rf ^«^««faf. New York: Acade^mc

[DUKSTRA 72]

c'AR^^^n^v5 0n
A

S,rüCtured **'****" Strucurrd Pro.rnmmin, Ed^ed by
CAR. Hoare. New York: Acaüem.c Pre^s, 1972.

[ELSPAS 1972]

Elspas. B. Ljvitt. O, Wa'dmger. R.J, and Wansman. A. "An Assessment of Techmques for
Proving Program-, Correct. Lo,n,,utina Surveys, Vol. 4 (June 1972). pp. 17-147.

[HALPERN 66]

Halpern M. Toundat^ono of the Ca5e for Natural-Language Programmmg." Prorr.dinas of
Ihr tau Joint Com^uwr Confrrrnrr, Vol. 29 (November 1966), pp. 639-649.

[HEWITT 72]

Hewitt, C. AMM<*IM and Thron-tirnl /Imlysn .i,inc SchrmainJ of PMNM-K /]
Unaua,r for Proving Tl*m*m and ,W0m>/«/,Hff Modrh in a Robot. Massachusetts
Institute of Technology, AI-TR-258, 1972.

[GINSBURC 66]

MinrbUr8,ui,SQ Ä i/ft'/",'"""V''/ T**V of Comou-hrrr U^MfM New York:
McGraw-Hill Book Company Inc., 1966.

[GOLDSTEIN 74]

Goldstein, IP indorsinndina Simple Pirturr Progmms. Massachusetts institute of
Technology, AI-TR-294, 1974.

[GOOD 75a]

tHJÜ r^0'3616 yv*™"^" ****** of th, hurrnntioml Conforms on
Krltnhlr Sofiunrr, Los Angeles, April 1975, pp. 411-419.

[GOOD 75b]

Good, DJ, London R.L.; and Bledsoe, W.W. "An Interacts Program Verification System"

igTs'pp'^^ 492 /"",r',a"'0"ft/ Cnn^ne'' •" WW* Ufimu* Los Angeles, April

[GREEN 74]

SSTl^ ISfTT'. RU' 8ar^t0W• DR-; E,SChla^er• R-: Lena,■ D0-' McCune. Bp-' Shaw.
SÄjnÄS^^'S?^ •" ^^*-~-Nl h~~ Stanford

[HILL 72]

UJ* "£ "Wouldn't It Be N.ce If We Could Wnte Programs m Ordinary English - or Would
II. I he Honryuwll Lomt.utrr Journal, Vol. 6. No. 2 (1972). pp. 76-83.

107

[JENSEN 74]

Jensen, K and W.rth, N. FASCAI. - Vm Manual and Report, Vol. 18 of /..r/urr MM« fa
Lomr-mor Snrnrr, Edited by G. QOOI and J. Hartmams. Berlin; Sprmger-Verlag, 1974.

[JOHNSTON 71J

Johnston. .3. "The Contour Morel of Block Structured Processes." Prorrrdi„a* of .
»m/.o.u.m M Data Structures in Proarammina l.anaua^. University of Florida, 1971,

[LINGARD 72]

.-Sard, RW.. ana W.^ynsKi, 3. "A Syntax Erected Approach for Handling Natural
Langutie Re^at ons Procrrdi.^ of thr /Issoriation for Co,n,lUtinK Mnrhm.ry, Boston,

[LINGARD 75]

ungaro, R.W. "A Representation for Sekante :n:orr.at,on Within an Inference Making
Computer Program. Lnp.ol.shed Ph.D. dissertat.on, Un.vers.ty of Southern California

[MANN 73]

n qT^^' "i?^^ 0f Cebüä S/Sterr'S" T,W U***»U Computer Journal, Vol. 7, No. 3.

[MARK 7C]

TR-725W1S974 **M'Mm**m* ■S>",",■ Massachusetts Inst.tute of Technology, MAC

[McDERMO'T 74]

^cDermort, ZV AMlntion of Vru, Information hy a Natural LanguaKr-lJnders,andinK

.>>.wrm. Massachusetts institute of Technology, Al TR-23.', 1974.

[MlNSKY 72]

Memo/252■,;97d2PaPer,■ S' ^"^ ^^ Massachusetts lns,ltu,e of Technology, Ai

[NEWELL 72]

Newell, A, and Simon, H.A. Human Problem Solving. New Jersey: Prentice-Hall, 1972.

[SACKMAN 74]

Sac.man. H, and Blackweli, F.W. Studies in Real-World Problem Solving With and Without
computers. Tnp Rand Corporation, R-i492-NSF, May 1974.

[SITES 72]

Sites, HL nigol W Ref«rente Manual Stanford University, STAN-CS-230, 1972.

[SUSSMAN 72]

Sussman, G.J., and McDerrr.oft, D.V. "From PLANNER to C0NN1VER -- A Genetic Approach "
Proveedtngi of the Fall Joint Computer Conference, Vol. 41 (1972), pp. 1171-1179.

108

